
~ II

" " III I

Programming User Support

Appl ications

Issue Number 29

Better Software Filter Design
Writing Pipeable User Friendly Programs

MDISK
Add a One Megabyte RAM Disk to Ampro L.B.

Using the Hitachi HD64180
Embedded Processor Designs

The ZCPR3 Corner
Announcing ACPR33 plus Z-COM Customization

68000
Why Use a New OS & the 680001

Detecting the 8087 Math Chip
Temperature Sensitive Software

Floppy Disk Track Structure
A Look at Disk Control Information & Data Capacity

ISSN • 07~9331

".00

THE COMPUTER JOURNAL
190 Sullivan Crossroad

Columbia Falls, Montana
59912

406-257-9119 Features

The COMPUTER
JOURNAL

Issue Number 29

Editor/Publisher
Art Carlson

Art Director
Donna Carlson

Production Assistant
Judie Overbeek

Circulation
Donna Carlson

Contributing Editors
Joe Bartel

C. Thomas Hilton
Donald Howes

Bill Kibler
Rick Lehrbaum

Frederick B. Maxwell
Jay Sage

Kenneth A. Taschner

Entire contents copyright©
1987 by The Computer Journal.

SUbscription rates-$16 one
year (6 Issues), or $28 two years (12
Issues) in the U.S., $22 one year In
Canada and Mexico, and $24 (sur
face) for one year in other coun
trIes. All funds must be In US
dollars on a US bank.

Send subscriptions, renewals, or
address changes to: The Computer
Journal, 190 Sullivan Crossroad,
Columbia Falls, Montana, 59912, or
The Computer Journal, PO Box
1697, Kalispell, MT 59903.

Address all editorial and adver
tising inqUiries to: The Computer
Journal, 190 Sullivan Crossroad,
Columbia FallS, MT 59912 phone
(406) 257·9119.

The Computer Journal/lssue.29

Better Software Filter Design
A compromise that allows programs written under
DOS to be pipeable. yet still user friendly
by Kevin Lacobie 5

MDISK
Add a one megabyte RAM Disk to your Ampro
Little Board
by Terry Hazen & Jim Cole 13

Using The Hitachi HD64180
Coping with object code incompatibility,
wandering I/O addresses, and using the ASCII ports.
by Kenneth A. Taschner & Frederick B. Maxwell 18

68000
An alternative to the PC for high performance systems
by Joe Bartel 31

Detecting the 8087 Math Chip
Routines which work on the XT don't always
work on theAT.
by E. Clay Buchanan III 36

Floppy Disk Track Structure
How track structure and sector size affect
the formatted capacity .
by Dr. Edwin Thall 38

Columns
Editorial , .. " , 2

Reader's Feedback 3

ZCPR3 Corner
by Jay Sage 22

Book Reviews 46

Computer Corner
by Bill Kibler 48

6800 Developments
IBM's recent announcements may (or

may not) have a major impact on what's
happening in the office appliance com
puter scene, but Hawthorne's progress
with their 68000 Tiny Giant and their K
OS ONE operating system is much more
exciting. While we may be forced to work
with IBM's and compatibles because
that's what our customers are now using,
the '386 systems which will be designed
for business will be about as much fun to
work with as the old mainframes.

Just as the microcomputers using 8080s
and 6502s developed into a separate
market from the mainframes and the
minis; the micro computer market will
separate into the business machines which
will largely replace the mainframes and
the minis, and something else which is fun
to work with. In the past, programmers
and hardware hackers slaved on main
frames during the day and then went
home to get personally involved with their
computers - even average people
banged away on Apples(!) because it was
fun.

The large volume of sales is in business
oriented machines, and as they become
more 'main frame like' they will also
become less interesting for individuals.
People who want to get involved with the
hardware and the operating system will
have to turn to something else. Some
possible contenders are the Apple IIGS(!)
and the Atari(!) , but they lack the flavor
of the old Apple II + and CP1M systems.
People will be looking for something
which is more powerful than the eight bit
systems, and yet friendly. Something
where they can modify the operating
system and design their own add on boar
ds. The only answer I see right now is a
68000 system using Hawthorne's OS
which comes with the source code.

Hawthorne has been making steady
progress expanding their product line with
items like their new Editor Toolkit, and
they're working with people on a com
munications package, a Forth implemen
tation, and possibly a BASIC, but what
we need is the third party and hacker in
volvment we had with the early Apple II.
If you want to develop code or hardware
for a 16-bit system where everything in-

2

Editor'5 Page

eluding the operating system is under your
control, you should write to Hawthorne
for their information package. If enough
of us get involved we can get a C compiler
running and perhaps convince Joe to
produce a board with slots for easy expan
sion. Write or call Joe Bartel at Hawthor
ne Technology, 8836 S.E. Stark, Por
tland, OR 97216 (503) 254-2005, to find
out what's happening in the 68000 world.
He'd really be interested in talking with
anyone who wants to develop a hardware
or software package for K-OS ONE.

If you'd like to write an artiele or a
column on the 68000, I'd be real in
terested in talking with you (even short
notes and letters will be appreciated).
Graphics Mania

Former CP1M users are complaining
that too many PCIMS DOS utilities use
fancy graphic displays which make them
unprintable. CPIM users are used to
using control-P to toggle on the printer
during an assemble, compile, or
debugging session in order to generate a
complete hard copy history of a work
session, and this does not work with PC
programs having elaborate graphic
displays. The question here is whether we
have impressive graphics or useful infor
mation, and I'll vote for having the hard
copy information I need instead of pretty
displays which impress the sales people
and non-technical users.

I fully agree that there are instances
where bit-mapped graphics are necessary
in order to display charts, graphs,
illustrations, and other non-character type
material; but I strongly object to being
forced to look at some designer's idea of
modern art while working with a character
oriented programming utility - in fact I
just won't use them! I fully agree with Joe
Bartel (see his 68000 section) that if you
need graphics it should be on a second
monitor, and if you need multiple win
dows they should each be on their own
monitor instead of many tiny windows on
one screen.

Compare these ideas with the former
idea that everyone should work at a dumb
terminal attached to the main
frame - they couldn't understand why
an individual would want the power of
our current micros on their desk. Now

we're saying that people will want
multiple CPUs and multiple screens in
stead of multitasking one one CPU and
windows on one screen.

Everyone is welcome to their own
opinion, and mine is that for character
oriented work I want a high speed charac
ter oriented monitor with no fancy
graphic borders or other distractions. At
least the program designers could provide
a toggle so that the user could select bet
ween a plain character and a fancy
graphics interface.

This is probably a cultural issue. People
who were raised watching color cartoons
on the boob tube, and who are not com
fortable reading a book, want to make
their computer monitors look like the
Saturday morning funnies. I like reading
books, and I want my screen to look like a
book - unless I need graphics for
illustrations or CAD. Even books have
illustrations where needed, but there is a
difference between a good novel and a
comic book!

1/this doesn't get someone mad enough
to write, I'll give up trying to get any
response. The purpose 0/ this Journal is
to provide communications, so if you
have something to say send it on disk or
hardcopy.

(Continued on page 44)

The Computer Journal/Issue "29

Reader's Feedback

Chicken-And-Egg Problem - Part One
I have been long concerned about the

chicken-and-egg problem with new
microprocessor chips, and I have a
suggestion which I believe would aid the
proliferation of the Series 32000
microprocessors. Now, I have much
respect for the Herculean effort that
National has made in developing the
32000, so please don't think that I would
frivilously recommend additional work
that National should do.

Thinking about the development of the
32000 makes me think of a marathon
bicycle race. In approaching the last hill,
the front-runners are usually in a pack.
Suddenly, one cyclist will break from the
pack and very strenuously apply everthing
that he has in an attempt to be the first to
reach the top of the hill. If he makes it to
the top of the hill without croaking, he's
the clear winner; he will sail to the finish
line with no possibility of the others cat
ching up. Since I see National selling those
very inexpensive 32000 designer's kits, it
seems to me that National is now attem
pting to break from the pack. When the
cyclist is in the middle of his big effort to
make good his break, it is likely that the
legs will send messages to the brain in
dicating that something additional is
needed. Likewise, in order for the 32000
to really decisively break from the pack,
something additional is needed.

Consider the early days of the 8080.
There were very many people who were
regular engineers by day and 8080 ex
perimenters by night. When the manufac
turers began to build products using
microprocessors, the industry turned into
a big vacuum cleaner trying to suck up
everyone who had experience with
microprocessors. The only people who
could answer the job ads were those who
had experimented with microprocessors at
home at their own expense. I disregard the
engineers that the various firms extract
from one another because there is no gain
in this kind of exchange. Because of the
availability of these self-taught
microprocessor users, the SOSO/ZSO boom

The Computer Journal/Issue 129

was spectacular. Intel is still riding on the
8080 boom that was given to them by
amateur experimenters.

Consider the early days of the 68000.
For the experimenter, bootstrapping his
own operating system and assembler was
too much of an obstacle. Therefore, the
amateurs stuck to their Z80's although
they had great lust for the 68000.
Motorola did nothing to cultivate self
taught users; they catered only to OEM's.
The OEM's built nothing but white
elephants because there was no supply of
amateur 68000 users to give the OEM's
the kind of expertise that they needed. If
there had been a supply of self-taught
users of the 68000, IBM could have used
the 68000 in the first Pc. If Motorola had
issued a simple public domain operating
system and assembler for the 68000 the
same day that they introduced the chip, it
is possible and even probable that we
would not see any Intel segmented
microprocessors in any personal com
puters today. For the first time in the life
of the 68000, there is now an economical
($50) operating system with an assembler
!lvailable to allow amateurs to begin work
with the 68000. It's not from Motorola;
it's from Hawthorne Technology.

Consider the present days of the 32000.
National sells some very nice development
tools, but they are all for OEM's. There is
nothing for amateurs. The OEM's are
producing some exceptionally wonderful
white elephants, but nothing that is apt to
proliferate enough to give the 32000 the
widespread usage that it deserves. There is
no supply of experienced 32000 en
thusiasts to give the OEM's the kind of
expertise that they need. The designer's
kits go a long way toward putting the
32000 in the hands of passionate ex
perimenters, but in this day and age the
chip set is not enough. There is a grass
roots 32000 interest group germinating in
the readership of Micro Cornucopia
Magazine, and I have corresponded with a
number of amateurs who are fabricating
their own experimental 32000 board. It is
excruciatingly painful for me to think of

the great duplication of effort as each of
these experimenters attempts to bootstrap
his own operating system and assembler.
The assembler in the Tiny Development
System that comes with the designer's kit
is nice but is not sufficient for the task of
bootstrapping an operating system. I have
been attempting to popularize the 32000
by giving away all the 32000 code that I
write. I'm in the middle of writing 32HL
(32000 hacker's language), which is a
stand alone combination of operating
system, assembler, high level language,
and editor. I plan to give it away to the
public domain even though I am not gain
fully employed. I have temporarily given
up this effort because the cross assembler
that I purchased from 2500AD was no
good.

Here is my suggestion: National should
issue a public domain simple single-user
operating system (with assembler) for the
32000 which any arbitrary experimenter
can port to his own unique 32000 board.
Such an operating system should be at
least as simple as CPM 2.2 and must have
a customizable BIOS similar to that of
CPM 2.2. Note that the customizable
nature of CPM is in part responsible for
the SOSO/ZSO boom. Each experimenter
can develop his own BIOS using the Tiny
Development System. With this kind of
system in the hands of 320Q0-loving ex
perimenters, there is no way that the
32000 could avoid being a smash hit.

Neil R. Koozer

Chicken-And-Ea Problem - Part Two
I think I've fmally figured out how to

solve the chicken-and-egg problems with
the 32000. It involves re-writing my 432
system with a different foundation. The
new version will start out as an assembler
so that it will be able to compile itself in
one quick pass at any stage of its
development. It should progress
something Ike this:

1. Create an NS32 native version of the
cross assembler Z32. It will call Z80

3

'.

-~

CPi'.l for file 110.
:. -\dd hlgh·level keywords such as IF,

ELSE. REPEAT, UNTIL, etc. At this
poinllt" a language compiler that accepts
either hIgh. level syntax or assembly syntax
in an\ statement. After this, any new
featur~ can be written in high level
language. and pre·existing features could
be changed to high level language.

3, Add an outer loop which accepts
keyt-oard Input, compiles it, and executes
it. ThIs loop creates the features of com
mand processor, high-level language in
terpreter. and assembly-language inter
preter. It will return even after stack
altering statements are executed. The
DOS commands (PIP, DIR, etc.) will be
in the language vocabulary. so they can be
executed from the keyboard or from
programs, Therefore, no batch processor
will be needed. Nothing like ARGC or
ARGY will be needed because the
keyboard invocation of a program will be
treated like a normal function call with a
normal parameter list.

4, Since an assembly-language inter
preter is almost a debug monitor, simply
add the few remaining commands to make
it a full debug monitor. These will include
disassembler, one-key single stepping,
one·key trace-through-call, and auto-

updating display of registers and chosen
memory locations.

5. Allow string variables to be com
piled the same as include files so that
string variables could be used as keyboard
macros, small batch files, etc.

6. Integrate a screen-oriented editor in
to the outer loop. The same editor would
be used to edit command lines and source
files. The command line would be stored
so it could be re-edited and re-executed
any number of times.

7. Add or change enough features to
allow any arbitrary experimenter to port
this code to his unique 32000 computer.

Because of the speed of this compiler
there may be no need to store any com
piled programs, but just store the source
code. At any time, an old version of the
(compiled) system would be in EPROM.
Upon power-up or reset, it would check
for an 'autoexec' file, which could have
instructions to compile the current version
of the operating system and to execute it.
This operation would be finished long
before the CRT lights up. To install a new
version of any module, simply put the new
source code for that module on the boot
disk and reset. All library modules for the
high-level language could be included as
well since replacement is so easy.

Whenever the EPROM version becomes
inadequate for compiling the current ver
sion, a new EPROM is burned.

At the end of any compilation, the
symbol table would contain the symbols
corresponding to any global variables or
procedures so that they can be used
manually or used by any subsequently
compiled program. With this scheme, any
program could make symbolic reference
to functions in the BIOS, BDOS, and
library without the use of jump tables,
link tables, or external addressing mode.
A BIOS jump table would be temporarily
used in a distribution copy until the user
has the system running.

Neil R. Koozer

HD64180
In issue #27 you published a article

about the HD64180. Since then Hitachi
has released, or is about to release, the Z
mask version which is more tolerant of
Z80 peripherials.

I am running a Xerox 820-11 with ZC
PR-2. My Z80 is resetting the system once
in a short while after a cold start. Rather
than buying a new Z80 I would like to

(Continued on page 35)

A fast 1 megabyte RAM disk
for your AMPRO Z80 LiUle Board!

Fast RAM workspace greatly speeds up disk-intenSive
operations like wordprocessing, database access, and
program development.

• 575 • 515'· printed CirCUit board plugs Into your AMPRQ laO socket

• Add standard 2S6K RAM crups tor up 10 1 megabyte of extended RAM

• 810S resldenl MOISK drl ...er software enables the extendea RAM to oe used as
a SOlid state dIsk drive. complete With system track 10~ ,nslan! warm boals

• Driver software supplied as readv·to-Instafl BIOS hex 'lies tor several common
system confIgurations Source code for BIOS driver ,nsens also Included

• InclUdes utilities lor bool-Ilme configuratIon and e't(tendea RAM testing

• ReqUIres 5vdC at 60 amp VIa standard disk drive power connector

• Little Board must be modlf,ec to replace !he oJ-it qA\~ cr',ps With Soc",e!s and
to add one Jumper Complete instructIons Inclur1ed

MDISK (Ok RAM supplied), including complete manual and
software disk. only $149 pius $5 shipping and handling
California residents add 6% sales tax Checks. COD. MO
accepted

We have CP/M software

NewWord - the better word processor
includes WORD plus by Oasis!
CP/M 80....•...................•............... $89

SuperSort - original sorting program
CP/M or MSDOS..•. ,•.•.............•.••... $85

Turbo Pascal - version 3.0
CP/M or PC/MS 005 · $45

Turbo Toolbox for CP/M or MS DOS......•.•...•. $39

The above items are limited to stock on hand.

C/80 Complier.....•...••...... ; .•.....•..••••.• $45

DateStamper - adds date and time to your CP/M
directory ... : •....•.•.........•...•........•...•. $45

8" 5550 disks, per box of 10 $5

Hardware and software for HeathlZenlth computers.
Add $4 per order for shipping and handling.

Terms: Check or Money Order - Visa/MC - COD.

California residents add 6% tax.

nlSYKIIMS
21460 Bear Creek Road. Los Gates CA 95030

ANAPRO
213 Teri Sue Lane

805/688·0826 .

Buellton, CA 93427

4 The Computer Journal/Issue "29

Better Software Filter Design
Writing Pipeable User Friendly Programs

by Kevin Lacobie, University of Texas Medical Branch

Summary: One of the more powerful features of the UNIX
operating system is piping, which allows the output of one
program to be immediately sent as the input to another program.
While MS-DOS has the piping feature, most programs written in
this system are not directly compatible with piping. The reason is
because of a conflict between terse 'pipeable' and friendly
'readable' output, and MS-DOS has chosen a more readable out
put, for the perceived casual user of its personal computer
operating system. A compromise is offered that allows programs
written under DOS to be 'pipeable', yet still 'user friendly'.

In computer operating systems supporting input and output
redirection and piping, ~he use of filter programs has become
popular. Output redirection refers to sending output from a
program to a device or file other than the default, which, for most
interactive systems, is the user's console. Input redirection is
similar, taking input for a program from something other than
the interactive device, the keyboard. Piping refers to the process
of having the output of one program be the input of another
program. Filter programs are "programs that read some input,
perform a simple transformation, and write some output. "(1)
The UNIX(!) operating system has become the most noted for its
use of redirection, piping, and filters.

For piping and filter programs to be robust, all programs in
the system must conform to some standards. Namely:

"The output produced by UNIX programs is in a
format understood as input by other programs.
Filterable files contain lines of text, free of decorative
headers, trailers, or blank lines. Each line is an object of
interest - a filename, a word, a description .,. When
more information is present for each object, the file is
stillline~by-line, but columnated into fields separated by
blanks or tabs ... "(2)

Since each program conforms to this, multiple programs can
be piped together, to transform some input into some interesting
new output. Given a range of robust mter programs, many dif
ferent interesting results can be derived by properly piecing these
programs together. "This powerful technique allows programs to
be written as small, compact, one-purpose-only packages which
can be used in conjunction with other programs to form more
complex packages. "(3) Thus, this often results in higher produc
tivity, for each time a new result is needed from some input, a new
program need not be written.

Interestingly, the MS-DOS~ (Microsoft Disk Operating
System) found on most personal computers supports redirection
and piping. However, many of its commands do not comply with
the above standards. This renders filter programs less functional,
even useless. MS-DOS has not whole-heartedly embraced the ad
vantages of the above standards. Interpreting this treatment
toward the functionality of piping and program interaction leads
to understanding some of the deficiencies in an operating system

The Computer Journal/Issue *29

environment based entirely on the above standards.
MS-DOS has been largely created from UNIX and CP1M, an

earlier operating system for microcomputers. Being for personal
computers, the outputs of most commands are designed for
usability, or 'user friendliness.' Thus, decorative headers, trailers,
and blank lines are used. This not only makes for a more attrac
tive display, but gives readable information to the user. For
example, the DIR command gives a list of all files in one subdirec
tory on a disk:

Volume in drive B is KEVIN

Directory of B:\

ARTlCLE2 4138 11-14-86 1:Uop
ARTICLE 2408 11-13-80 1:33p
WORDS USE 66 12-01-86 5:33p
WORDS <DIR) 11-13-tl6 11: 58a
ARTICLE3 1621 11-17-tl6 1U:42a
UNIXPC 3205 12-18-86 3:15p
CAPS SCR 335 12-01-86 2: 12p
CAPS COM 50 12-01-tl6 2:12p
COMMITTE <DIR) 12-18-86 3:20p
FILTERS 6662 12-19-86 12:12p

11 File(s) 222208 bytes free

The output from DIR is indeed readable. However, it is
nearly useless for filter programs. A user may want to sort the in
formation by date, for example. A sort program could sort each
line from the output of DIR, but it would sort the header lines
and the summary lines in its output, thus not producing the expec
ted output.

A typical UNIX command, when invoked, gives only a terse
response. As pointed out above, this terse response is excellent for
the standard, for another program could use its response as input.
However, for a user, most "UNIX tools tend to be terse to the
point of unheipfuiness. "(4) For example, we is the word count
program. It will count the number of words in a normal text me.
Yet, when invoked, it will respond with a line similar to:

59 199 2029 file

The output's meaning is unintuitive to the user. Only if the
user remembers this command, or if header information is prin
ted, will it be known that 'file' contains 59 lines, 199 words, and
2029 characters.

A typical DOS command might give such header infor
mation. This has proved very helpful for users, who on personal
computers tend to be casual users. Thus, very few programs in
MS-DOS have been written to the standard of filter programs. It
can be argued that this has resulted in the loss of some fun
ctionality, as a new program must be written for every new task.
In summary, DOS has given up the advantages of the pipe, in
favor of more user readable output.

5

Certainly, some compromise between the standards for good
filter programs, which leads to well-integrated tools, and more
friendly output is desired. In "The Critique of UNIX," such a
compromise has been described. A highllevel construct should be
available for a program to know whether "it is being called as
'stand-alone' or part of a chain of programs. "(5) With this con
struct, programs can, without much effort, take on a very dif
ferent shape. If the input was not piped in, then the program can
prompt the user for needed information. If the programs's output
is not to be piped, then header information, more proper spacing,
and summary information can be printed. However, if in a pipe, a
program can output in the terse, single line per object format
famous in UNIX programs. Now, the 'best of both worlds' is
permitted.

A simple example below shows how a program would be
written with this construct:

extern int standalone()
maine)
{
int _standalone,sumt

Similarly, InAloneO can be written to test whether the
program's input is coming from the standard input device, or was
redirected or piped. InAlone can be used to determine the
necessity of prompts to the user. The only difference in the above
code for 'inalone' is < C> regs. bx = 0< C> , to signify the DOS
number for standard input.

With these constructs, programs should conform to some
new standards. Namely, the filter program standards mentioned
above should be used, but when 'standalone' (and only when
'standalone'), a program should print a header describing the
output, appropriate blank lines and pagination, a header
describing each column of information, and summaries giving
totals or other relevant information about the collection of objec
ts that the program processes.

With this in mind, LS.C (Listing 1) has been written to give
an example of the use of 'standalone'. LS is also a useful program
for DOS systems. First, it can display aD that DOS knows about a
file. Secondly, it is able to list fIles in all subdirectories in the
hierarchical file structure that DOS has had since version 2.

The syntax for LS is:

DOS FILE INFORMATION

DIRECTORY: d:\path

LS [searchpattern] [/A{AIRIDIH}] [IF} [/0] [IT] [IS]

If in a pipe, however, the output is only one line per me, in
the foIlowing format:

"""

SS8 dd/mm/yy hh:mm Attr
.. II It It

sss dd/mm/yy hh:mm Attr
It It It II

FILE3 "

FILEl
FILE2

DIRECTORY: d:\path\subpath

d:\path\FILEl
d:\path\FILE2

'Searchpattern' may contain drive and directory infor
mation. Without any flags, LS will display only file names. Ad
ding flags IA (Archive), IF (File size), ID (Date), andlor IT
(Time) will display more information about each file. Qualifying
the I A flag will list only files with the qualified attribute(s) (A for
Archive, R for Read-only, D for Directories, and H for Hidden
(and System) files). Adding /S will allow LS to display files under
all subdirectories of the specified search patten,.

If standalone, LS will output in the following format:

standalone - standalone()
if (standalone)

printf("PROCESSING HEADER\n"}
doProcessing() ;
if (standalone)

printf("SUMMARY DATA: %d\n" ,sumt)

REGS regs;
int flag;

'include <dos.h>
int standalone()
{

The only responsibility of DoProcessingO is to output infor
mation one line per object. Only if in a standalone mode wiIl
header and summary information be printed, and this is handled
bymainO·

Standalone can be easily added to MS-DOS. Since version 2,
a DOS function call is available which allows the program to in
terrogate device information. With this function call, standard
output can be interrogated to see if it is a character or block
device. Character devices are such entities as printers and con
soles, while block devices are for storage of files. Since piping is
done through temporary files, it suffices to determine if the stan
dard output is a character device or not, to determine if it is part
of a pipe or not.

Standalone can be created as a function utilizing this
method. Below is shown the function in 'C', with a standard
library call to make a DOS call.

regs.ax - Ox4400 ; /* DOS funct' for IOCTL */
regs.bx - l; /* DOS' for standard output */
flag - intdos(®s,®s) ;

/*check Bit 7 to determine if character device*/
regs.dx &- Ox80 ;
return (regs.dx -- Ox8U) ;

/*
See latest version of DOS Technical Reference

Manual, under the chapter "DOS Interrupts and
Function Calls", for the description of function
call 44 Hex, "I/O Control for Devices (lOCTL)"

The latter output is more useful for other programs to per
form sorting, selecting, or selective me processing, and be able to
access files, regardless of which subdirectories they are in.

As another example, InAloneO is used in the the ParseCom
mandO procedure (Listing 2), which can be used to add flexibility
to normal filter programs. ParseCommand will look on the com
mand line, or prompt the user, whenever it determines that the
input is not being redirected. This allows a program to be called in
one of three ways: either as a filter, with syntax: program < infile
> outfile; as a command, with syntax: program infile outfile; or
as a prompted command by entering just program, and the
program will prompt the user. The trick is in the fact that 'stdin',
the standard input, can be closed and reopened to a program sup-

8 The Computer Journal/Issue 1129

*1

Listing 1

When the user includes specific attributes on the command line,
LS will only list files containing those attributes.

*1

1*
Program to list DOS files. Similar to DIR except that only
information wanted is displayed, file attribute information
can be included, and it can list files in all subdirectories

*/

*1

Get first Directory Name

1* Search for all directories

J
PrintLine(path,area) ;
info - HyFindNext(attr,area)

strcpy(new,path) ;
titrcat(new.'··.*I') ;
info - HyFindFirst(new,DlRECTORY,area) ; 1*
while (info 1- NULL)
{

StrCpy(new,path) ;

}
if (flag.dir)
(

StrCat(pattern,"*.*") ; 1* See if its a directory *1
into - HyFindfirst(pattern,attr,area)

first - OFF
if (alone)

¥rintf("Directory: %s\n",path)

if (first)
(

l'rintHead() ;
Search(pattern,attr)

Search(pattern,attr)
char *pattern
int attr j

(
char path[b5J,name_ext[12J,new[80j ;
int first;
volatile struct flNDAHEA area, *info;
/* AHEA is needed for the DOS Functions Find First 60 find Next to work *1

first - ON ;
levelH ;
if «info - HyFindFirst(pattern,attr,area» -- NULL)
{

I
SplitPattern(pattern,path,name_ext)
while (info 1- NULL)
{

1* Logic of S~ARCH:

1. Set L~V~L.

2. With the specified search pattern, call the DOS function fIND FIRST.
3. If no file found, try adding a wildcard at end of search pattern, to

see if the pattern only a dirve specifier or directory.
4. If 3 fails, return.
5. ~18e, print this file information, and loop through DOS fiND N~XT,

until no more files exist.
b. If FLAG.DIR is set, then user wants to have LS display files in all

subdirectories. So, search for any subdirectories in the current
directory.

7. For each subdirectory, splice the directory name string t~ the search
pattern, and call Search for this N~W pattern.

*1

lIsl"[/A{AIRIDIHI}) [IF) LID) LIT)
IF to list file size"

IT to list file date 60 time"
subdirectories also\n"

flag.size • flag.att • flag.dir - OFF

StrCpy(pattern,"*.*")
attr - 0 ;
flag.date • flag. time •
ParseCollllll8nd(argc,argv)

unsigned dir : i ;
unsigned time : 1 ;
unsigned date : 1 ;
unsigned size : 1 ;
unsigned att : 1 ;

} flag ;
int level· O,alone • 0, attr;
char pattern(80) ;
struct FINDAREA *HyFindFirst(),*HyFindNext()

struct
{

1* Program logic:
1. Parse co...nd line, setting appropriate flags and creating the

specified search pattern.
2. Call Search, which will print all specified files.

lIl8in(argc,argv)
int argc;
char *argv!) ;

'include <dos.h>
'include <ctype.h>
'include "myfind.c"
'include "alone.c"
'define NULL 0
'define ON 1
'define OFF 0
'define Haxlndent bO
'define IndentAaount 2
'define LF '\n'
'define BACKSLASH '\\'
'define USAGE "Usage: LS [searchpattern)
'define HELP 1 " IA to list attributes\n
'define HELP2" ID to list file date\n
'define HELP)" IS to list files in all

d
CD

~
3

"C
C
iD.,
~

o
c.,
::J
!!!.

'iii
lAl
C
CD,.
~

.... alone - StandAlone()
if (alone)

•

CD J LS.C

StrCat(new,info-)name); /* Splice in Directory Name as part of */
StrCat(new,"\\") ; /* search pattern */
StrCat(new,name ext) ;
Search(new,attr) ; /* Search all files in this directory */
info - HyFindNext(DIRECTORY,a€ea); /* Get next Directory Name */
level-- ;

char pml3) ;
char *charattr()

if (alone)
Indent (level)

else
Printf("Xs",path)

Printf("X-12s",info-)name)

/* Splits search pattern to prefixed pathname and suffixed file naae/extension.
*/

SplitPattern(pattern,path,fileext)
char *pattern,*path,*fileext ;

/* Pattern will be in the form: 'd:path\path\filename'.
By searching from the end of the string, go until finding the first
backs lash or colon. Then, the first part of the string will be
'D:path\path\', while the remainder will be 'filename'.

if (flag. size)
Prlntf(" X6Id",info-)size)

if (flag.date)
(

dd - getbits(info-)date,4,$)
mm - getbits(info-)date,8,4) ;
yy • getbits(info-)date,UxUF,7) ;
Printf(" X2d-XU2d-X02d",_,dd,yy)

/*
/*
/*
/*

See DOS Technical
Hanual, 'DOS Disk
on how DOS stores
time information

Reference */
Directory' */
Date and */

*/

*/
(
int i ;

if (flag. time)
(

i++ ;
StrnCpy(path,pattern,i)
pathli) - "0' ;
strcpy(fileext,pattern+i)

i - StrLen(pattern)
i--

path[U) - '\0' ;
StrCpy(fileext,pattern)

)
else
(

I
else

pmlUJ - 'a' ;
Printf(" X2d:X02dX2s",hour,minute,pm)

pmll) - 'm' ;
pml2J - '\U' i
minute - getbits(info-)time,OxOA,6)
hour - getblts(info-)time,OxOF,$)
if (hour) 12)
(

pmlO) - 'p'
hour -- 12 ;

)
if (flag.att)

Printf ("0 Xs" ,charattr(info-)att ribute»
putchar(LF) ;

«i)- U) && (patternli) 1- BACKSLASH) && (patternliJ I- ':'»
,
-- 0)

while
i-

it(i
(

for (1-0;i($;i++)

PrintHead()
(

static char field[$)
int i ;

/* Translate the integer ATTRIBUTE into d1splayable characters */
char *CharAttr(att)

int att ;

DOS File lnfonaation\n")Puts("

int .. ,dd,yy,m1nute,hour

}
I

*/
PrintL1ne(path,info)

char *path ;
struct FlNDAREA *1nfo

/* Logic of PRINTLINE:
1. Print indentation if ALONE.
2. Else, print path string.
3. Print File Name.
4. For each Flag, print related file 1nforaat10n, convert1ng

file date and time to displayable foraat, if necessary.

Ii
(AI
c:
CD
'II:

~

;}
CD

bl
3
'0
c:

i
L.
o
c:
3
!!!.

c - ToUpper(argv[i)[j)
switch(c)
{

default

ca8~ '5'

case ' ~.,

case '0'

case 'T'

-f
J
CD

~
3
'0
c:
iD.,
C
o
c:
3
!!.

iii
'"c:
CD

rA

field[IJ - '
1 - 0 ;
if (att & RO)

fieldII++) - 'R'
If (att & HIDDEN)

fIeld[I++) - 'H'
If (att & SYSTEN)

fIeld[I++) - '5' ;
If (att & DIRECTORY)

fIeld[I++) - '0'
If (att & ARCHIVE)

fIeld[I++) - 'A'
return fIeld ;

/* Indent, but only up to a certaIn aaount */
lndent(n)

Int n;

Int 1 ;

n *- IndentAmount

If (n > Maxlndeot)
n - Maxlndent ;

for (I-U; 1 < 0; i++)
putchar(' ') ;

getbits(x,p,n) /* get n bits fro. posItIon p */
unsigned x,p,n ;

return «x » (p+l-n» & -(-0 «n»

case 'H'

case 'A' : attr 1- AltCHIVH
break ;

case 'R' : attr 1- RO ;
break ;

case '0' : attr 1- OIRHCTORY
br"ak ;

case 'Ii' : attr 1- HIDDEN I SYSTHH
br"ak ;

I
break
flag.dir - ON i
break ;
flag.size - ON
break ;
flag.date - ON
break ;
flag.date - flag. tim" - ON
break ;

puts(USAGE)
puts(HELPI)
puts(HELP2)
puts(HELP3)
ExIt(U)
br"ak ;

Fputs(USAGE.stderr)
Exit (I)

br"ak ;

OD

ParseCoaaand(argc,argv)
int argc ;
char *argvl) ;

Int c,i,j

for (i-I; i(argci i++)
if «argvlIIlOj -- '-') II (argvl11l0j -- '/'»
{

c - ToUpper(argv[I)[I)
switch (c)
{

case 'A'
flag.att - ON ;
for lj-2. j <strlen(argv[i);j++)
1* read all attribute bits specifIed after the 'lA' on

the co...nd line */

I
els"

StrCpy(patt"rn,argVli)

HHINU.C

for Better Software Filter DesIgn

1* The two functions below are provided because th" DUS function
call to FIND 1il"s is lackIng in two areas:

1. If you want to get files only with certain attributes, DOS
will return files with that attribute. and all normal files;

2. it will not easily allow r"cursive calls to sub-dir"ctori"s.

These two functions remedy this, by passing the FIND structure as part of
the call, which DOs' us"s to sture file information, and information ne"ded
for th" FIND next. Notice that HYFINDNEXT should only be call"d aft"r
HYFIND~·lKST. and only with the same attrIbute selling.

,. ..

~

o */
'include <stdio.h)
'define RO 1
'define HIDDEN 2
;define SYSTEM 4
'define DIRECTORY 16
'define ARCHiVE 32
'define NULL 0
/* See DOS Technical Reference Manual, section on DOS function

call 4~H, FiND FIRST, for documentation of FINDAREA structure.
*/

struct FlNDAREA
I

char reservedl2ij
char attribute ;
unsigned time, date
unsigned long size
char name 113 J ;

I;

struct FiNDAR~A *HyFlndNext(attr.area)
int attr ;
struct flNDAREA *area ;

RtGS regs ;
do I

Hdos(Ux1a,area) ;
regs.ax - Ox4fOU ;
if (intDos(®s,®s) &1)

area - (struct FINDAREA *) NULL;
J

while «area I- NULL) && (I(area-)attribute & attr) && attr)
I I (area-)nameIO) -- '.'» ;

return area ;

ALON~.C

1* Program Logic of KYFINDFIRST:

struct FiNDAREA *HyFindfirst(name,attr,area)
char *name ;
int attr ;
struct FINDAREA *area

REGS regs ;
Hdos(Ux1a,area)
regs.ax - Ox4eOU ;
regs.dx - (int) name
regs.ex • attr ;

*/

1. Set DOS Disk Transfer Area to the AREA structure. DTA is needed for
the DOS FIND function.

2. Call DOS FIND FIRST. If error, set AREA to NULL.
3. If found file not of the proper attribute, call DOS FIND NEXT, until a

proper file is found (also, ignore DOT and Double DOT files).

/*
Function to deteradne if the calling program's output is the console, or is
in a filter

*/

'include <dos.h)
standalone()
I
REGS regs ;
int flag;

regs.ax - Ux4400 ; /* DOS function nuaber for IOCTL */
regs.bx - 1 ; /* standard output */
flag - intdos(®s,®s) ;
regs.dx &- Ox8u ; /* check Bit 1 */
return (regs.dx -- Ux80) ;

Bdos(Ox1a,area) ;
regs.ax - Ox4fOO ;
if (IntDos(®s,®s) &1)

area - (struct FINDAREA *) NULL

if (IntDos(®s,®s) &1)
area - (struct FiNDAREA *) NULL;

while «area 1- NULL) && (I(area-)attribute & attr) && attr)
I I (area-)nameIOj -- '.'»

strcpy(file2,argv[2])

char filenaae[80j,file2[BO]

For Better Software Filter DesignListing 2

'include <stdio.h)

sw!tch(argc)
{
case 3

ParseCo...nd(argc,argv)
int argc ;
char *argv[j ;

/* Normally expects the standard input, but user can specify
file name on co...nd line, or have prograa prompt for
filename. */

if (inAlone(» /* Then no redirected input */
{

Program logic of KYFINDNEXT:
1. Set DOS DTA to AREA.
2. Call DOS FINDNEXT until a file with the proper attributes is found.

return area ;

/*

*/

~
CD

~
3

"U
C

CD...
C
o
c
3
!!.-ii
III
C
CD

~

plied filename. With ParseCommandO, a programmer can write
the main program operating on only the standard input and out
put, and not worry at all about the I/O. For example:

main(argc,arg~)

int argc ;
char *a rgv l J

char c ;

ParseCommand(argc,argv) ;
while (gets{str) !- EOF)
{

/* To be whatever the filter processes */
Procesststr)
puts(str) ;

point is that the main application need not deal with these details.
All the main applications needs to operate on is what it thinks to
be the standard input and output.

The UNIX system, popularized filter programs. It is even
conjectured that the redirection and piping features are the cen
tral features of UNIX. While MS-DOS has taken many of the
same features from UNIX, its built-in commands and programs
do not conform to the same standards, rendering piping less fun
ctionality. DOS does this to obtain the advantage of more
readable, thus more useful to the casual user, output from com
mands. The simple functions standalone and inalone, which use
only a single DOS call, solve the problem of filter programs being
too terse, while maintaining their functionality. Users writing
their own programs, and programmers creating public domain
and commercial software are encouraged to incorporate these
functions in their programs, so their programs can be used in
piping and for casual users.

Adding ParseCommand to a filter program adds three user
interfaces to the same program. First, it can be a filter program,
to be used in pipes. Second, it performs like a command, with the
user specifying files on the command line. Last, it presents a
prompt interface, for the more casual users who only know the
name of the program. ParseCommand can be different for each
application, as it may need to parse flags or options on the com
mand line, or give additional prompts to the user, depending
upon the application. ParseCommand could easily present a for
ms interface, or a 'point-and-shoot' method to choose files. The

References

(I) Brian W. Kernighan & Rob Pike, Unix Programming En
vironment, (Prentice-Hall, New Jersey: 1984), p.101

(2),ibid., p.130.
(3) Gordon Blair, Jon Malone, & John Mariani, "A Critique

of Unix" Software- Practice and Experience, V.15, #12 (Decem
ber 1985), p.1132.

(4) ibid., p.I135.
(5) ibid., p.I133.

Listing 2 Continued
case 2

case 1

pfrintf(stderr,"Output to where? ")
gets(file2)

strcpy(filename,argv[ll)
break ;

}
else

if (strlen(file2) I- 0)
freopen(file2,"w",stdout)

We have C source
code for public domain
versions of most UNIX
programming tools.

Control your environment
wherever you work!
Over 100 volumes...
Quarterly newsletter.
Cand UNIX Books.
200 page indexed source
code directory.
Write or call
C UN,.' Group
po Box 97
(316) 241-1065

Own The
Source Code

IUsage: %s file newfile\n",progna_);
or %s <file)newfile\n",progname;

fprintf(stderr,"Which file to convert? ")
if (strlen(gets(filename» -- 0)

exit(l) ;
if (StandAlone(»
{

}
break ;

default: /* argc) 3 */
fprintf(stderr,"ERROR.
fprintf(stderr,"
exit(l) ;

}
if (freopen(filename, "r" ,stdin) _. NULL)
{

frpintf(stderr,"Cannot open '%s'\n",f11e08_)
eut(l) ;

• • •

The Computer Journal/lssue'29 11

589

5119

Project Board/SO'"
Prototype adapter
for Z80 based projects
and products.

Little Board'"
World's least expensive
single board system.

599

from 5149

Project Board/186'"
Prototype adapter
for 80186 based projects
and products.

Little Board'''/186
High performance single
board MS-DOS system.

5469

----"."',"-__ _POm
:;~""""""""

,-"""
'~.........,......"""

'(lM

from51795159

iii. Motherboard and 4 Expansion cards In the
Space of a Half-Helght 5-1/4" Disk DrIvel

Little Board'" /PC
World's smallest PC - and CMOS too!

DC'velopment Chassis/PC'"
"Known Good" PC bus project development environment
for little Board/PC (not included).

. flrI'
.. '2-1', ••

.' . ;~ fi
,. I:
. : ,:.

III 0

. 'u
• I ••

-~,

II

'-'r;
oj • t.

~

599

SCSI ZSO Host Adapter
SCSI host adapter for any
Z80 system.
Plugs into Z80 socket.

~I/IOP'"
STD bus I/O expansion
adapter for any SCSI host
system.

Concurrent PC-DOS''' ..
Multi-user, mUlti-tasking oper
ating system fc'tr little Board/186
supports up to four users.

Expansion/186'"
Multi-function expansion for
little Board/186.1/0, Serial,
RAM, and Math Options.

SCSI Memory Controller
SCSI controller for fixed and
removable volatile and non·
volatilesemiconductormemory.

from $495

Bookshelf'"
System Modules
• PC compatible little Board/PC systems.
• Single and Multi-User little Board/186 systems.
• little Board/Plus CP/M systems.
• SCSI disk and tape expansion modules.
• Floppy drive expansion modules.

CMOS Video Controller
4-mode CMOS video
controller for little
Board/PC.

Dlolrtbuloro 0 Argenllnl: Factorial, SA 41 -0018 0 AUllrlnl: Current SOlut,ons 1031 227-59590 Brl.lI: Computado,es Compuleader (41) 262-4866 0 Clnlcll: TrI-M 16041438-0028
oDenmlrt<: Danb,t (03) 6620200 Flnllnd: Symmetric Oy 358-0-585-322 0 Frlnee: Egal Plus (1) 4502-1800 0 Gennlny. Well: 1ST-Elektron,k Vertrobes GmbH 089-611-61 51 ollrul:
Alpha Term,nals. Ltd. 103) 49-16-95 0 Spotn: Hardware & Sottware 204-2099. Sw_n: AS Akta (08) 54-20-20. UK: Ambar Systems, Ltd. 0296 435511 0 USA: Contact Ampro

MDISK
i

Add a One Megabyte RAM Disk to Ampro L.B.

by Terry Hazen &Jim Cole

Introduction
MDISK is a printed circuit board. containing sockets for up

to 1 megabyte of 256k RAM chips, that plugs into the Z80 socket
on your AMPRO Z80 Little Board. The MDISK software drivers.
when added to the AMPRO BIOS source code, enable the Little
Board to use the additional RAM as a solid state disk drive, com
plete with a system track. MDISK utilizes the additional memory
by swapping 32k pages in and out of the tower 32k of system
memory while the upper 32k, containing the operating system
along with the MDISK drivers, remains a stable "global"
memory segment.

AMPRO's SYSGEN utility can be used to copy the system
track from your AMPRO boot disk to the system track on
MDISK, and the SWAP utility will allow you to make MDISK
your logical drive A so that very fast warm boots can be made
from the MDISK system track. The ZCPR3 PATH utility can be
used to optimize your file search paths for use with MDISK.

In part one of this series, we will discuss the modifications to
the Little Board that are required in order to allow the MDISK
hardware to address and refresh the extended RAM. In part two
we will cover the software driver routines that are added to the
AMPRO BIOS in order to enable the extended RAM to emulate a
disk drive.

Although MDISK was designed specifically for the Little
Board, it could probably be used with many other Z80 computers,
depending on their specific hardware design and the structure of
their BIOS. At this time, however, MDISK has not been tested
with machines other than the AMPRO Z80 Little Board.

Why use a RAM Disk?
Since Z80 computers only have a 64k memory space to work

with, many programs use the disk drive a lot to swap program
overlays in and out of memory. This process can be quite slow,
especially if you are using floppy drives. The major advantage of
using a RAM disk as your operating workspace is its greatly in
creased speed when you are performing operations requiring a lot
of disk access, like word processing, program development, or
database manipulation. Files resident on a RAM disk are accessed
at memory speed, while accessing files on floppy or hard disks is
relatively much slower.

For example, using a 4 mhz Little Board and a 96tpi floppy
disk drive with a 3ms head stepping rate, the ACOPY file copy
utility can copy and verify a lOOk file to another filename on the
same disk in about 91 seconds. The same operation on the
MDISK RAM disk takes about 18 seconds, almost one-fifth the
time. On the floppy disk drive, WordStar and the same lOOk file
can be loaded and the me ready to edit in about 26 seconds, while
on MDISK they are ready to go in under 4 seconds!

Your computer work habits will probably change a lot when
you have this kind of fast response at your fingertips. When doing
assembly language programming, for instance, you can modify

The Computer Journal/lssue,29

the source code, assemble and test it, and go back and repeat the
cycle again so quickly that it becomes almost interactive. You can
aiso use the ZCPR3 utilities VAllAS and SAK to set up a recur
sive ALIAS (that is, an ALIAS that calls itself) to create such a
cycle, making the process even easier and faster.

Programs seem to run so fast that it becomes very fast and
easy, for example, to exit WordStar, run another program or look
up material in another text file, then go back into WordStar
almost as quickly as you can write about it. The Little Board isn't
running any faster, you just aren't waiting around for the disk
drives to do their work anymore. It is very hard to go back to a
floppy disk system after using MDISK for a while, and the system
that seemed perfectly adequate before now seems horribly slow
and inconvienient.

The Price of Progress
Everything has its price, however, and MDISK is no excep

tion. Only the later modellB Little Boards have a provision for a
high speed bus, the SCSI port. SCSI extended RAM boards are
offered by AMPRO and while they are undoubtedly the easiest
and most elegant way to obtain Z80 extended RAM, they are
relatively expensive. We have chosen instead to access the Z80
directly. Our approach is to remove the Z80 from its socket and
plug in a printed circuit board containing the required interface
circuitry, the extended RAM chips, and a new socket for the Z80.
This approach requires a little hands-on modification of the Little
Board, but is considerably less expensive and can be used with all
Z80 Little Boards, even those without SCSI capabilities.

Since MDISK will contain a number of 256k dynamic RAM
chips that will replace the 64k chips originally resident on the lit
tle Board, you will need to remove the 64k chips from the Little
Board, replace at least one of them with a socket, and you will
need to add one jumper. A 16 pin ribbon DIP cable from this lit
tle Board RAM socket to the MDISK board will allow access to
the normal 'RAM BUS' signals on the Little Board so that we
don't have to duplicate the circuitry that provides them. If all 8
RAM chip positions are socketed, the Little Board will operate
normally when the 8 64k RAM chips and the Z80 are present.

Another part of the price that must be paid is the suscep
tability of the data contained on the RAM disk to problems on the
AC power line. Since MDISK becomes an integral extension of
the Little Board, the whole Little Board/MDISK combination, or
at least the 5 volt power to both boards, must be battery backed
up to avoid power outage problems. We have not taken that ap
proach at this time, choosing instead to knowingly use the
MDISK RAM disk as a volatile workspace and making use of
ALIAS mes, archiving (under ZRDOS), and ACOPY to help us
back up the working material often during the work sessions. This
approach has worked quite well in practice.

13

Ampro Little Board Modifications
With care, removing the 8 64k RAM chips on your Little

Board and replacing them with sockets is not really difficult. If
you don't have experience with soldering and desoldering on prin
ted circuit boards, you might wish to re~ew James O'Connor's
article, "Repairing and Modifying Printed Circuits" and Bill
Kibler's column "The Computer Corner," which deals in part
with removing and replacing ICs. Both articles appear in issue #25
ofTCJ.

Removing the RAM Chips
The first step is to identify the 8 chips you need to remove.

They are the 64k RAM chips, and are marked "4164." On the
Little Board IA (the original Little Board), they are chips U21-24
and U30-33. On the newer Little Board IB (with provisions for
SCSI), they are chips U19-21 and U30-34. Remove these chips by
cutting off each chip lead close to the PCB with close cutting
snips. You can then use a good solder sucker to remove the lead
and the solder at the same time, provided that the lead is straight
and the solder sucker is kept clean and clear. When all the leads
have been successfully removed, check all the holes and clean
them out with a solder sucker if necessary.

Adding Sockets
You will need to add one socket to the Little Board in order

to access some of the signals needed for RAM control, but as long
as you need to add one socket, you might as well socket all 8
positions so that you can have your Little Board work as it did
originally if necessary. If you wish to only add the one required
socket, the prefered position is U21 on both the model IA and
model lB.

Use good quality 16 pin sockets. Low profile, double-wiping
sockets that make contact on both sides of the IC leads are
recommended. Tack all the sockets in place first, soldering only
the two diagonal corner leads on each socket. Then you can apply
finger pressure to the socket and re-melt one corner of each socket
at a time, which will release the socket to seat itself fully. Then
you can carefully solder the remaining leads. Check for good
connections and any solder bridges. Clip off the leads close to the
board if they are too long.

Adding the Jumper
Add a jumper on the back of the Little Board from pin 1 of

the RAM socket that you will use for your 16 pin ribbon DIP
jumper cable (for example, U21 on either the model IA or IB) to
pin I of either of the two 74LS157 multiplexer chips (U20,29 on
model lA, U22,23 on model IB), whichever is closest. This jum
per will extend the multiplexer select line to the MDISK board,
where it will be used to help generate the extended chip ad
dressing.

Flux Removal
Use a liberal quantity of flux remover spray to remove all

residual flux from back of the Little Board, following the direc
tions on the can. To avoid problems with the fumes, work out
doors if at all possible. When you are done, there should be no
traces of flux on the back of the board at all. Try to keep the
remover off the front of the board, as you can't get under the
sockets and other components well enough.

Testing the Modified Little Board
Check to make sure your Little Board still works properly by

inserting a new set of 8 64k RAM chips (2oons is fine) in the

14

sockets. Put the Little Board back in its case, connect everything
up, and boot a disk. If all is well, everything will run normally.
Try running some programs you are familiar with to be sure
everything is OK.

The MDISK Printed Circuit Board
The MDISK board consists of seven basic functional sec-

tions:
1. Z80
2. I/O port decoder and latch
3. Refresh generator
4. Memory chip selection
5. A15 address generation
6. A16/A17 address generation
7. I to 4 banks of 256k RAM chips and associated buffers

Let's look at each section, and then see how they are tied together
to function as a single unit.

TheZSO
The Z80 is removed from its socket on the Little Board and

plugged into a socket on the MDISK board. The MDISK board
has a 40 pin board-ta-board connector that plugs into the Z80
socket on the Little Board. In this way, we can intercept the Z80
signals that we need to modify in order to create extended RAM
addressing, and then pass on the modified signals to the Little
Board.

The I/O Port Decoder and Latch
The Z80 processor has 256 possible I/O ports. The AMPRO

Little Board uses several of these for various functions, such as
the floppy disk controller, serial ports, printer port, and on the
later boards, the SCSI port. We chose to use port 30H as the
MDISK control port as it is not used by the Little Board har
dware.

In operation, the ZSO processor executes an OUT 30 instruc
tion and puts the contents of the A register on the data bus. Two
comparators, UI and U2, monitor the address lines, and NOR
gate U3c monitors the Z80 WR* and 10RQ* lines, watching for
the proper port address and generates a high pulse whenever an
OUT 30 instruction is executed. This pulse will cause 8 bit latch
U4 to latch and hold the A register contents from the data lines.
This data will not change until the next OUT 30 instruction is
executed or the reset button is pressed.

These 8 data bits are used to generate the extra address bits
needed for the 2S6K RAM chips and to control the MDISK drive
select LED. DO is used as AI5 when addressing the lower 32K of
the Z80 address space. Dl and D2 are used to generate A16 and
Al7 for the RAM chips. D3 and D4 generate the RAM chip selec
tion for Bank I, 2, 3 or 4. D7 is used to turn on and off the
MDISK "drive select" LED, which is under software control and
is used only to help the operator m0tlitor disk operations in
progress. The D5 and D6 bits are not currently used.

Editor's Note:
The IEEE standard uses a new notation for logical and elec

trical state relationships which is convenient with word
processors. The overbar is no longer used to indicate an active low
signal state because it is difficult for many word processors and
phototypesetters to set it. The suffIX "*,, is used instead to
designate that an electrical signal is active low, as in the Z 80 WR *
above.

The Computer Journal/Issue #29

Figure 2

!lank X and Page Yare selected by the value In the 8 bit latch.
Any bank can be selected, including the global Ilank I Page 2.

DO0102030405Db07

MDISK RAM Disk Memory Selection

I
+------+ I
l!lank II I
IPage 21 I
IGlobal1 I
+------+ +------+
l!lank XI(--)lllank II
IPage YI(--)IPage II
I I I I
+------+ +------+

7FFF

+-----+-----+-----+-----+-----+-----+-----+-----+
~ ~it Latch: I ~EO I N/ A I N/ A I - I - I Al7 I Alb I AIS I

+-----T-----+-----+-----+-----+-----+-----+-----+
I

I I I I I I I I
+---+
I Address Decoder / Multiplexer I

+---+

~~
CALEN DAR/CLOCK

$69 KIT

~~::=!:-........D~~~s~I~~~~~
• Works with any Z-80 based computer.
• Currently being used in Ampro, Kaypro

2, II & 10, Morrow, Northstar, Osborne,
Xerox, Zorba and many other computers.

• Piggybacks in Z80 socket.
• Uses National MMS8167 clock chip, as

featured in May '82 Byte.
• Battery backup keeps time with CPU

power off!
• Optional software is available for file

date stamping, screen time displays,
etc.

• Specify computer type when ordering.
• Packages available:

Fully assembled and tested $99.
Complete kit $69.
Bare board and software $29.
UPS ground shipping $ 3.

MASTERCARD, VISA, PERSONAL CHECKS,
MONEY ORDERS & C.O.D.'s ACCEPTED.

N. Y. STATE RESIDENTS ADD 8% SALES TAX

KENMORE
COMPUTER
TECHNOLOGIES

P.O. Bolt 835. Kenmore. :'liew York 1-1217 t711H /'l77·0617

0000

8000

Data Lines:

FFFF

Zl:lO
Address
(Hex)

gated through thl:: other two sections of AND gate U5 to
multiplexer U6.

Dynamic RAM chips use a multiplexed address line to
decrease the number of pins required to address a large memory
space. The first half is called the row address strobe (RAS), and
the second half is called the column address strobe (CAS). During
the RAS cycle, U6 will output the AI6 bit and during the CAS
cycle, it will output the AI7 bit, thus providing the 256k RAM
chips with the required A8 signal. This is coordinated with the
other address lines by using the multiplexer select signal from the

(U7 Input) I (U7 Output)
Pins: 2 3 I 4 5 b 7

Al6 and Al7 Generation
The AI6 and Al7 address lines are generated from data bits

stored in latch U4. DI and D2 become the new address bits for the
extra RAM chips, provided AI5 is low. These two data bits are

The Refresh Generator
The l80 was designed to work with dynamic RAM chips and

is able to generate 7 bits of refresh internally and gate them onto
the address bus at the proper times. This will support the full l80
address space of 64K, which is normally adequate. 256K dynamic
RAM chips, however, require 8 bits of refresh to retain their con
tents. While the l80 takes care of generating the refresh signals
for AO-A6, the :vtDISK refresh generator circuit intercepts the
l80 A7 line and 8 bit counter U10 counts the refresh cycles, set
ting its output high for 128 cycles and then low for 128 cycles.
During refresh cycles, U9 adds the output from U10 to the l80
A7 signal in order to provide the 8th bit refresh signal for the
RAM chips. During non-refresh cycles, U9 passes the l80 A7
signal on unchanged to the address bus.

Figure I

00 10111
0111011
10 11101
1111110

Al5 Generation
The l80 AI5 line is intercepted and regenerated by U3 and

the DO output of latch U4 in order to control all of the extra ex
tended RAM chip addressing. When it is high, the A16/A17 and
the bank select logic are all forced to a logical 0 state, selecting the
upper 32k of the l80 address space, Bank I Page 2. All of the
control software is executed from this area, simplifying the sof
tware and management of the memory banks. The system of
memory banks is shown in figure 2.

RAM Chip Selection
The chip select logic uses the CAS· signal required by the

dynamic RAM chips. If a RAM chip receives a normal read cycle
(except for the CAS· signal), it accepts it as a refresh cycle. If the
CAS· signal is present, a memory read/write cycle is processed.
The CAS· signal is generated by logic on the AMPRO Little
Board and gated to the selected MDISK RAM chip.

Address bit AI5 is used to differentiate between the 32k
global page of RAM in high memory and the various banks that
MDISK swaps in and out of the lower 32k of l80 address space.
If AI5 is low, bits OJ and D4 in latch U4 are gated to quad AND
gate US, selecting the bank to be swapped into the lower 32k. If
AI5 is high, addressing the upper 32k, the outputs of US are all
forced low, making the high bank always Bank I Page 2 of
memory. This provides a stable global base in the upper 32k of
the l80 64K address space for the operating system and RAM
disk control.

The outputs of U5 are fed into 2-4 decoder U7 as shown in
Figure 1. The outputs from U7 are fed to quad OR gate U8 along
with the CAS· signal from the Little Board. Notice that there will
always be a logical 0 on one of the U8 OR gates. That gate will
send the AMPRO CAS· signal to the selected bank of 256K RAM
chips for the read/write operation. The other banks will process
the cycle as a refresh.

The Computer Journal/Issue 1129 15

.. ICIII 8 Bit Refresh -- --- --- -

-~:~, u. U'lt>

~II~~
~l'>Ql2l

'hu~t51_ U14l
I

I'!>

DCq~l

.~ A0
A
A~

46

00 IOJt::;] ,r,;;] ~ IOJ II" IDl IDI l~
i A41 '7r;;l ?r;;t 1'~ 1~ ~TM1
~Ol JI DO I DI ID I-unJl)T m DO I DL 00

.5. ~r'
uw. I UI8 I VIZ, I lJ~ I VI':> I UI1

1
~·11(.r: - - -,

I I I 1,1
I I

J4 I I

..,~~DI:£~ __ ! _'

!Rio I UlJl I un I uz.~ I Uz.~ I un

u)(" I U3Il I u~z. I u~... I U~ I U!ll

U6oJ. I l"8 I lJ'\ t I lI'\~ I U4'" I U41

lJIl'\

U~4

U41

lIZ I

U31

U~\

~

I.. __ w ~

Figure 3:
MDISK Schematic

II:' 2:,
I RPS '

041 tl :

,
I
I

Il iI
-- -_

~ ro',NV~==J,

~A~

I j

-;1

~
. ~,:'~"

fr.l
U'lf>

i~

"m~':~" ~: I I I~tt
I _ ;,> _lK

• • ICi

~

CD

L:..:.J

JI

~~c..
~.

I~.~.

~rJ J~'l

I .., ,

I:.Is.nr-x;c

ii'
CII
c:
CD,.
l'6

-l
:::T
CD

bl
3

"t:J
c:
iD.,
c
o
c:
3
!!!.

Little Board, which we have jumpered to pin one of the Little
Board RAM socket we are using for our RAM interconnect cable.

RAM Banks
The MDISK hardware will address up to four banks of 256k

RAM chips located on the MDISK board. This will give us up to I
Meg of additional RAM. Some of the Little Board signals
required for RAM operation, such as WR·, RAS·, and the
multiplexed address lines AO-A7, are obtained from the Little
Board RAM socket via the 6 inch 16 pin ribbon DIP interconnect
cable that is plugged into MDISK socket J2, as they are not direc
tly available at the Z80 pins. The interconnect cable signals are
buffered by U51 and U53 before being sent to the RAM chips.

Operation
We have now created a Z80 that has a "window" in the

lower 32k of its 64k address space. This window can be filled with
any 32k page of the extended RAM by loading the proper byte in
to the control port, as shown in figure 2. The upper 32k of
memory is global and never changes, giving us the consistant
work area we need for the operating system and the routines
necessary to use the hardware as a RAM disk.

The Computer Journal/Issue N29

Connecting It All Up
Remove the Z80 from the Little Board and plug it into the

Z80 socket on the MDISK board. Plug one end of the 6 inch 16
pin ribbon DIP cable into the Little Board RAM socket that you
have wired the jumper to, with the cable tail extending toward the
rear edge of the Little Board (the edge with all the connectors on
it). Carefully plug the MDISK 40 pin board-to-board connector
into the Little Board Z80 socket, plug the free end of the 16 pin
ribbon DIP cable into J2 on the MDISK board. The MDISK
board requires 5 volts at 0.60 amps, which is supplied through n,
a standard 5Y. inch disk drive power connector. This is the same
type connector used by the Little Board. If your power supply
doesn't have any extra plugs, a standard disk drive 'Y' power
connector can be used to supply both the Little Board and
MDISK boards from one power supply plug.

Next Time
In part two we will present the software drivers that are ad

ded to the AMPRO BIOS in order to enable the Little Board to
use the new extended memory as a solid state disk drive. These_
drivers must be added to the AMPRO BIOS source code, which is
available directly from AMPRO, and is a worthwhile investment
for anyone interested in learning about the inner workings of their
operating system or in customizing or optimizing their system.. .~

17

Using the Hitachi HD64180
I

Embedded Processor Designs
By Kenneth A. Taschner & Frederick B. Maxwell

Electronic Technical Services

Jon Schneider gave us an introduction to the HD64180's
features and programming in his two part series "The Hitachi
HD64180: New Life for 8 Bit Systems," Computer Journal issues
#27 & 28. We will try to build upon this by first covering the
highlights of the part, followed some of the problems we must
work around (virtually every complex piece of silicon or software
has some bugs). In future articles, we will compare it to its com
petition, both 8 & 16 bit, for use in embedded processor design
and we will cover the various versions of the 64180/ZI80 and
correct methods of interfacing to memory and peripherals.

The popularity of the Intel 8080/85 series, the Zilog Z80
series, and the newer National Semiconductor NSC-800 as em
bedded processors has established the viability and desirability of
this basic, 8-bit architecture as a problem solving tool. While
speed improvements have been made in both the Intel and Zilog
processors since their introduction so many years ago, until the
unveiling of the HD64180 by Hitachi, this powerful architecture
had not been updated with the introduction of a compatible, big
brother processor with additional features and/or powerful, on
board peripherals. The introduction of the Hitachi HD64180 has
provided the stepping stone that designers have been .looking for
and that, up to now, has been unavailable. With this processor,
Hitachi has given new life to many older systems. The HD64180
allows engineers to upgrade existing designs without a major sof
tware re-write, to add additional features that require more
memory addressing or speed than the older 8-bit processors were
capable of, and, most importantly, allows the engineer to design
in a processor that has an architecture and instruction set that is
familiar to his software staff.

The HD64180 is a desirable, supported part with many
features that will cause it to be a major force in the embedded
processor market. Being a CMOS chip, its power consumption is
an enviably low 75mw at 6mhz clock speed. Its two ASCI (Asyn
chronous Serial Communications Interface) ports with built in
baud rate generators provide the communications to the outside
world that many embedded processor systems require. In addition
the HD64180 has a third serial port which is intended as a high
speed inter-processor communications channel for multiple
processor designs. Lastly, its extremely low cost will make it a
serious contender where cost is an important consideration.

A Family Affair
The HD64180 is not an orphan. Its basic design will be made

available as a standard ASIC. (Application Specific Integrated
Circuit) cell. An ASIC is a semi-custom part which consists of
building blocks (cells) that can be put together by a hardware
engineer to produce an IC customized to his design's requiremen
ts. This allows a company to reduce the parts count, assembly
cost, debugging cost, repair cost, and physical size of its product
by getting a large percentage of the parts needed in a single IC
package. Unlike a hybrid circuit, an ASIC is a single piece of

18

silicon. This allows an engineer to prototype a design using an
HD64180 and to reduce the design to an ASIC package with few
extraneous parts.

The microcomputer market is not being ignored either,
where Hitachi intends to package the HD64180 with RAM,
ROM, EEPROM, I/O, and possibly A/D converters for sale as
part of their growing family of single-chip microcomputers. This
will allow an off-the-shelf part to be used in designs where an
ASIC's initial cost cannot be justified and where individual com
ponents could consume too much board real estate (space) or
could make the product too costly to produce.

ALMOST 1000/0 Object Code Compatible
From an applications programmer's point of view, there isn't

much to worry about when it comes to writing software, as most
of the actual interfacing to the hardware has been done through
the operating system or through BIOS calls. One problem that
applications programmers must be aware of is a subtle difference
between the Z80 and HD64180 when using the RLD or RRD nib
ble rotate instructions. The Z80 flags reflect the contents of the
accumulator upon completion of the instruction, as we would ex
pect, however, the HD64180's flags reflect the contents of the
memory location pointed to by HL, an obvious error. The bug
exists in all package styles in both the RO & RI masks of the
HD64ISO. The Zilog equivalent to the Hitachi HD64180, the
ZI80, is still in ALPHA test and, at the time that this is being
written, it is not known if this bug has been fixed. Fortunately,
this instruction is used to manipulate BCD type data and rarely
are the flags checked after its use. If you must make a decision
based on the results of one of these rotate instructions then OR
the accumulator with itself to correct the flags. Please don't make
the mistake of depending on this bug of the current 64180 in your
software, as it may be corrected in a future release of the part,
and, it guarantees that your code will not run on the new Z280 or
the older Z80 or NSC-800.

Most of the problems that will need to be dealt with will oc
cur to the engineer designing hardware or to the systems level
programmer writing the BIOS or, in the case of embedded
processors, the low level device drivers.

Wandering I/O Addresses
The first issue we will cover will be the' '64K" of I/O address

space. One of the many enhancements of the 64180 over its 8 bit
predecessors (8080,8085,Z80,NSC800 etc.) is the enlargement of
its physical 110 address space from 256 110 ports to 65536 110
ports. This at first glance would appear to be heaven sent,
especially since the onboard peripherals use 64 110 ports, but
great care must be used to actually reap any benefit from these
new-found 110 ports. Where does the 64180 actually get its upper
8 bits of 110 address from? Herein lies the problem. The typical
OUT (PORT),A can have disastrous effects in a 64180! Why, you

The Computer Journal I Issue *29

ask? Well, the designers of the 64180 use the contents of the ac
cumulator as the upper 8 bits (A8-AIS) on the OUT (pORn,A
instruction. To illustrate the problem let's look at typical I/O
sequences and and their effect on the 641 80's enviroment.

Typical ZBO I/O

DATA EQU 010H
PORT EQU 022H

Lo A,oATA Get data byte to output to
port.

OUT (PORT> .A ••• now send It.

In the 64180, using this same code sequence the I/O port
selected will depend on the contents of the register being output!
Remember, AIS-A8 is equal to the contents of the accummulator
and A7-AO is equal to the port specified so, DATA = lOH and
PORT = 22H the effective port address is 1022H! Now let's just
change DATA to 80H. Now the port address we output to is
8022H! As you can see, this fairly common code sequence is
useless on a 64180 using 64K I/O addressing. Is there a "work
around" for this design flaw? Fortunately, the answer is "yes."
The register indirect OUT (C),A is actually equivalent to OUT
(BC),A, so, just load the (BC) register with the actual physical
address of the port to be output to. This can be done, because on
a register indirect instruction A8-AIS reflects the contents of the
B register!

,learned long ago, no matter how little space this memory mapped
I/O uses, someone will think they need the memory. Fortunately,
it is unusual for a system to need so much I/O address space that
256 ports are not enough, so designing for 256 ports and preser
ving the ability to use the Z80 and 64180 I/O instructions (yes you
can use the new I/O instructions on any I/O port in the 256 I/O
port address) is usually the way to go.

64180· ASCI Ports· Goodbye DART!
The 64180 has 2 on-board, independent, full duplex ASCI

ports with independant baud rate generators and control lines.
Although both channels are very similar, there are some minor
differences, primarily in the modem control lines. The ports share
the following characteristics:

o Full Duplex e.-.nlcatlon
o 1 or B bit data length
o 1 or 2 stop bits (see text about bug)
o 9th data bit for IIUltldrop c~nlcatlons Ihardware

lIIUst be configured for party line eaa-unleatlons)
o Odd. even. no parity
o Progre-aable baud rate generator or optional external

clOCk
o ModeM contro I signa Is:

Porto :OCOO -Data Carrier detect -Isee text about bug)
CTSO -Clear to Send '
RTSO -Request to Send

Port I :CTSI -Clear to send
o Progre-aable Interrupts Is"" text on precautions)
o DMAC Operation - To be decusSlld In a future artlcal
o Double buffered receiver and tran..ltter

A Correct *thod for 641BO 64K I/O

LD
LD
OUT

EQU 01022H
EQU 010H

A.oATA
BC, \lORD AOOR
(Cl.A -

; Port address

; Byte to output.
; Set port address In <BC>.
; •••now send It to port 1022H

As Jon Schneider suggests in his articles, it saves a lot of
typing to generate include files to define absolute I/O addresses
and then to refer to them using the same symbolic form as Hitachi
demonstrates in their data book. We use a slightly different
method than Mr. Schneider does. See the example below:

This problem also exists on block I/O as seen in the following
sequence: ASCI - Asynchronous Serial e.-.nlcetlons

Typical Z80 Block Output to Port

LD It...BLOCK START ; String to output to port.
LD B.HIJilBaCBYTES; •••strlng length to output.
LD C,PORT - ; Port to output string.
OTi R ; Output and repeat t I I I done.

CHTlAO EQU BASE-tO ; ASCI Control REG A Chan 0
CNTlAl EQU BASE+1 ; ASCI Control REG A Chan I q!l

etc.

Usage:

BASE EQU 0 ; Location of 64180 I/O Ports for
this ~

; design.
IHCLlIJE IBOPORTS.w.c

A Correct *thad for 64180 Block I/O:

Again the problem is that the OTIR instruction is using the B
register as its repeat loop counter and the 64180 uses the B register
as the upper address. Therefore, if B = S and PORT = llH the
bytes would be sent as follows. I/O addr. = 05llH, data = (HL)
then 110 addr. = 04llH,data = (HL+ 1), etc.

There are hardware solutions to these problems, of course.
One could set up an I/O port to act as an I/O page register for the
upper address lines but the 64180 would not recognize this so we
would lose 64 I/O addresses in each page to avoid conflict with
the 6418O's internal I/O ports. Another approach would be to
memory map the I/O, but, as microcomputer manufacturers

Ol022H ; Port address

I'"

We use this approach so that the same include file is used for
all of our designs regardless of where we locate the 64180's I/O
ports.

Before we start discussing the serial port registers and simple
programming of the ASCI channels under programmed I/O and
interrupt let's cover the two problems on which we receive the
most phone calls.

Stop Bits
Most commonly used UARTS on the market will allow the

user to specify whether to use I or 2 stop bits. What stop bits
specify, in reality, is the delay between characters. UARTS that
support this feature, if programmed for 1 stop bit. will wait 1 bit
time at the end of the character being transmitted before starting
the next character transmission, If 2 stop bits are requested they
will insert 2 bit times before sending the next character. Regar
dless of the number of stop bits specified, the vast majority of
UARTS only require 1 stop bit on a received character. There is a
not so obvious advantage to this: Most systems will use only 1
stop bit above 300 baud. This decreases the communications time'll
by approximatly 10.,.. In many cases this savinas isn't actually

; str I ng to be output to port.
; Set port address I n <Be>.
; •••strlng length to output.
; Get byte.
; Output byte.
; •••next byte.
; •••one Iess to do.
; Keep going until string Is

It...BLOCK START
BC. wam AiloR
o•HlMlElf BYTES
A.llt..l
(Cl.A
It..

°HZ. LOOP

EQUIlClllLAOOR

LD
LD
LD

LOOP: LD
OUT
INC
DEC
JR

COIIPlete.

The Computer Journal/Issue '29 19

realized due to proccessing overhead on one or both sides of the
link. Some computers are fast enough to keep the UART full so
there is no break in the transmission stream, but, many "in
telligent" peripherals are not quick enough to get the character,
process it, determine whether to try to stop the transmitter by
toggling a handshake line, etc. These devices (most notably
CRT's and PRINTERS) gain the extra time they need when the
transmitter inserts an extra stop bit. Therefore, a common prac
tice, with fast I/O processors, is to send 2 stop bits and receive I,
being compatable with virtually all peripherals.

The 64180 ASCI channel, although technically correct,
requires 2 stop bits on receive if the transmitter is programmed for
2. If the ASCI port on the 64180 is programmed for 1 stop bit it
will work with most devices whether they are programmed for 1
or 2 stop bits (preferred usage). The exceptions to this, being the
aforementioned intelligent terminals and printers which fail to
operate at higher baud rates (9600 and above) without delays. If
the 64180 is programmed for 2 stop bits the device it com
municates with MUST always send 2 stop bits or the 64180 will
misinterpret some characters. Hitachi has indicated that future
versions of the 64180 (available Spring of 1988) will conform to
the same conventions used by other industry-standard UARTs so,
until then, it is recommended to only use 1 stop bit.

Data Carrier Detect - Stop Interrupting Me!
DCDO* (Data Carrier Detect Channel 0 NOT) is a status line

into ASCI channel O. If this line is in the normal (logic 0) state,
channel O's receiver behaves normally. If the DCOO* changes to a
disconnected (logic I) state, ASCI channel O's receiver is disabled.
It will not be re-enabled until DCDO* returns to a logic 0 AND
STATO is read. The first time STATO is read, it will indicate that
the device is disconnected and will cause the ASCI to re-evaluate
the DCDO* line condition. If DCDO* indicates that there is a
device present, the receiver is immediately activated. When
STATO is re-read, the actual status of the DCDO* line will be in
dicated, so remember, if DCDO* indicates that there is no device

connected, re-read STATO if you need to know the actual status
of DCOO*.

The reason that this operates in this manner is to prevent the
processor from interpreting line noise as legitimate data when no
device is connected and this works fine as long as the serial data is
gathered as programmed I/O. Where a potential problem can
arise is using interrupts with ASCI channelO. Whenever DCOO- is
high, an interrupt will be generated. This is the same interrupt
generated by the channel 0 receiver, so, before a character can be
read, it is the programmer's responsibility to read STATO and
assure that the interrupt was not generated by a change in the
DCDO* line. If it was caused by the DCOO- line and interrupts are
re-enabled before the DCOO*line returns to a logic 0, we will be .
hit by another interrupt immediately. This will also happen if the
interrupts are re-enabled before we read STATO and determine
that the DCDO- problem has been corrected. This is because this
is a level sensitive interrupt. It will interrupt whenever the level is a
logic I, not just once, as an edge sensitive interrupt would. Ob
viously, the stack will get blown away if we enable and get in
terrupts before returning from the one we're servicing! In a
correctly designed RS-232C interface, line noise is not a serious
problem, so the obvious solution to this problem is to simply
ground DCDO*, preventing this disastrous problem from ever oc
curring. A much more intelligent design would have been to
generate an interrupt on a change of state of DCDO- rather than
on a level.

Future Installments
In upcoming articles, we'll discuss programming the serial

ports, memory interfacing to the HD64180, clock speed vs. baud
rate, and more! •

Editor's Note: We want to expand this HD64180 section, so send
any tips, ideas, questions, or answers. We would also be in
terested in hearing about what you are doing with the '180,
especially any unusual applications.

North American One·Eighty Group and Electronic
Technical Services

Hardware and Software support for zaO/HD641801Z280 Computers

'The OateStamper: Time and date stamping facility for Z·

I
System and CP/M 2.2 flies, provides creation, access and
modification time and date, also supports a hardware-in·
dependent Real Time Clock interface. Includes many support
utilities, even works with SB18O's "heartbeat" clock.

I From Plu·Perfect Systems, $49.95 complete plus $3 s&h

•HI·Tech C Plua: Professional C complier produces ROMable,
reentrant code, runs under Z·System or CP/M, interchangeable
Zao- and HD6418().optlmlzed libraries with source, single
precision floating point support, assemblerllinker, conversion
utility for use with M80 and SLR assemblers. Function
prototyplng and 31·character names supported.
From ETS: $195 complete plus $3 s&h

·The One-Eighty File: "The chronicle of the 8-bit renalssan·
ce" - the monthly newsletter of North American One-Eighty
Group (NAOG) and ZCPR Systems Interest Group (ZSIG) keeps
you up-ta-date on the latest PO and commercial software
releases, advanced 8-blt hardware developments, inexpensive
PO disks, hardware savings, tips for programmers and users.
From NAOG/ZSIG: $15 for 12 issues ($25 outside North
America)

20

• ET5-180-IO + : Add·on board for SB180 provides two 115.2 kbps
serial ports, SCSI interface, battery·backed Real Time Clock, 24
bits of parallel 110, XBIOS, OateStamper, full Z·System support
included.
By ETS, $299.95 complete plus $15 s&h (includes NAOG memo
bership)

•XBIOS: Flexible operating system for SB180 and SB180FX has
cached disk 110, expanded TPA, menu-driven installation. In
cludes OateStamper, utilities, supports Z·System and both
MicroMlnt and ETS add·on boards. •
By Xsystems Software, $74.95 complete plus $3 s&h

•Backgrounder II (BGII): Full task swapping for Z·System and
CP/M 2.2 computers, suspend current task without losing your
place, supports two independent TPAs plus many always·
available internal commands, includes Print Spooler, screen
and function key drivers, much more.
From Plu·Perfect Systems, $74.95 complete plus $3 s&h

Call 215-443·9031 during East Coast busIness hours
MasterCard. VISA accepted

The Computer Journal/lssue'29

;, 1987 MicroPro

*Big news
for the brave
few ofyou

who started this
whole thing.

WORD
STAR~

CP/M- Edition,
Release 4.

Finally, allthe "ifonly's."Over 100 truly useful improvements including undo, macros, on-screen boldfaceand underline, and
multiple ruler lines stored with documents. Even something to helpyou get the mostfrom your laserprinter. Everythingyou
need to be at the forefront oftechnology. Again.

System requirements: CP/M-80 2. / orhigher; 54K TPA w/Math (5/K TPA withoutMath). Disk requirements: two 5-114" DD
drives, or two 8" drives. oroneDD floppy drive anda harddisk.

To order WordStar, CP/M Edition, Release 4, fill in this coupon and send your check or money order to: MicroPro Order Updale Department. P.O. Box 7079,
San Rafael, CA 94901·7079. Orcall toU·free 800-227·5609Ext. 762. Allow 3-4 weeks for delivery.

Name Osbome~ formal 5-1/4" disks CP/M Release 4 $89.00
Address Kayproo formal 5-1/4" disks Tax·
QIy Stale--Zip Generic 8· disks Shipping/Handling $5.00

Apple' formal 5-1/4· disks__(available October '87)
Company Name WordStar Serial No. or include title page Total
Telephone (of your WordStar Reference Manual. "Only these states require sales tox:

C4. GA. II.. .-IM, NJ, NY. OH, TXand VA.

"'brdStar andMicroPro are registered trademarks ofMicroPro InternationalCorporation. CP/M isa registered trademarlt 01DigitalResearch, Inc.
AI/Olher productnames andtrademark informatian are listed for purposes 01description only.

The ZCPR3 CQrner
Announcing ICPR33 &I-COM Customization

by Jay Sage, Echelon, Inc.

One of the problems with writing a column for a magazine
that only appears every two months or so is that so many things
can happen between when one column is written and the next one
is published. (Of course, there would be other, insurmountable
problems if I had to turn out these columns every month, so I am
not complaining.) At the end of the last article, I mentioned that
ZCPR33 would probably be out by the time that issue appeared.
Indeed, that was true. What I did not write, because no public
announcement had been made yet, was that I had joined the
Echelon team and would be the author of that version. So I am
now wearing two hats, one as ZSIG software librarian and one as
the Echelon team member in charge of command processor
development. Richard Conn has gone off to do more esoteric
things. In recognition of this change, I have broadened the title of
this column.

ZCPR Version 3.3
Since ZCPR33, or Z33 as I will call it for short, is too exciting

a subject to pass up, I will say a few words about it before con
tinuing the discussion we began last time of techniques for
customizing Z-COM. I will not say too much, however, since a lot
of effort already went into preparing the 6O-page "ZCPR33 User
Guide." It has all the details and is available from either Echelon
or Sage Microsystems East for $15 plus shipping ($3 from SME).
Since the code, as in the past, is still available free of charge for
personal, noncommercial use, sale of the manual is the only way
other than OEM sales that we get any compensation for the
enormous amount of effort that went into Z33. I wiII talk this
time only about the design goals for Z33, and perhaps in future
columns I wiII talk about some of the new features and
capabilities.

Design Goals
In developing Z33, I tried to achieve five things (the number

keeps growing every time it think about it). (I) I have tried to
maintain a very high level of compatibility; (2) I have tried to in
crease flexibility, control, and speed; (3) I have tried to make the
code rigorous and reliable; (4) I have tried to make more infor
mation about the internal state of the command processor ac
cessible to user programs; and (5) I have tried to make the code
readable and educational.

To the greatest extent reasonable, I have maintained com
patibility between Z30 and Z33. No change need be made to any
part of the operating system other than the command processor;
the Z33 command processor, as I hinted at in the last column, can
simply be dropped in wherever the old command processor was,
either on the system tracks of the boot disk or in the appropriate
places in a Z-COM system. No changes need be made in the
memory allocations, and the officially released system modules
that worked with Z30 will work with Z33 as well, though new,
more powerful RCP and FCP modules were released with Z33

22

(the 'H' command in the unofficial experimental RCPI45,
because it made direct references to internal addresses in the
CPR, will not work). All application programs and almost all
utility programs wiII work unchanged with Z33. New utility
programs have been written to take advantage of some of the new
features in Z33.

Many features of ZCPR3 - such as automatic path sear
ching for COM files, extended command processing, and error
handling - are very convenient but can significantly slow system
response. With Z33, the user is given greater control over these
features from the command line so that unnecessary operations
can be bypassed to save disk activity and time. No longer does the
path automatically include the current directory first. The user
can now. at his option, omit the current directory or include it in
any position in the path. This has a dramatic effect on system
speed. A command entered with a leading slash ('/') is handled
directly by the extended command processor without wasting time
searching the path for a COM file. For systems that take in
creasing advantage of ARUNZ or other extended command
processing, speed is, again, greatly improved. Programs with
what is called a type-3 environment are automatically loaded and
executed at addresses other than lOOH. By loading error handlers,
shells, and extended command processors high in memory, user
programs at IOOH are left intact and can be reinvoked using the
GO command.

The code in Z33 was almost totally rewritten, taking only the
basic functions from Z30. Quite a few bugs, some very serious,
were corrected, and new algorithms were used for many of the
functions. A great deal of effort was devoted to making the code
rigorous. No longer can a command tail longer than 128 bytes
overwrite the program code and crash the system. No longer can
command lines in SUBMIT flies write beyond the end of the
command line buffer. The root path and minimum path features
now work correctly, so that duplicated elements in the search path
do not have to be searched more than once. Extended command
processing functions reliably and in combination with error han
dling.

The Z33 command processor makes much more information
available about its operation. In Z30, only COM flies that could
not be found would invoke error handling. Z33 traps many dif
ferent kinds of errors, and it can report the nature of the error to
the user. Some examples are TPA overflow, disk full, bad
numerical expression, incorrect password, bad directory
specification, or ambiguous file specification. Z33 even makes it
possible for user programs and routines in the resident command
package to invoke error handling and to report the type of error.
When Z30 parsed a file expression that specified an invalid direc
tory, it simply substituted the current directory, but the program
had no way to tell that this had been done. Z33 sets a flag to in
dicate the error. With Z33, a program can tell where on the search
path it was actually found. This can be valuable for shells and

The Computer Journal/Issue 1129

error handlers that install themselves into the system. They can
operate faster if they know where they are located.

Finally, the source code has been completely reorganized and
very extensively commented. I did this not only to make it easier
for me to maintain it but also so that others could read it to learn
how the command processor works. One of the main reasons why
many of us hobbyists remain involved in the 8-bit world is that a
Z80 can be comprehended fairly easily and can thus be used to
learn deeply about the operation of a computer. Z33 is designed
to contribute to this.

Advanced Z-COM Customization

In our discussion last time we described what Z-COM is and
how it works, and we presented a numbp.r of techniques for
carrying out simple modifications that diG not alter the basic
structure of the Z-COM system. This time we will examine some
much more far-reaching modifications, inc!uding those that in
volve changing the way Z-COM operates. The goal is to develop
techniques that will permit us to use the basic principles behind Z
COM to build arbitrary systems of our choice. I do want to warn
you: a good part of this discussion will be at an advanced
technical level. Even I feel rather mentally exhausted after going
through the process of developing it and writing it down. If any
one section is getting too technical for you. please do not give up
completely. Skip ahead to each new section and read the in
troductory philosophical comments. There is material there that I
would really like everyone to see.

When Z-COM WiII Not Work
Before launching into the heavy code patching, I would like

to cover a topic that probably should have been included last
time: why Z-COM will not work in all systems or will not work
fully.

There are two circumstances that I have experienced in which
Z-COM interferes with the proper operation of a system. One
class of difficulties arises when the system uses utilities that make
modifications to the operating system image in memory. Such
utilities always invite disaster, but they are nevertheless quite
common (partly because they are so useful). If the utilities
calculate the addresses to change from the BIOS warmboot ad
dress at location 0001, then there will be trouble, because that ad
dress points to the virtual BIOS set up by Z-COM and not to the
real BIOS.

The Ampro BIOS, for example, has a number of special
structures in defined locations with respect to the beginning of the
BIOS. Some of these, for example, support the various con
figuration options. Since these options are rarely changed except
when the system is first assembled or when new hardware is ad
ded, one can overcome any problem by running the utilities when
Z-COM is not in operation. Other BIOS structures are used to
define the alternative disk formats. These one might want to
change during a session at the computer. Although it is incon
venient, one could again exit from Z-COM using ZCX, change
the disk format, and then reenter Z-COM. Of course, a conven
tionally installed ZCPR system is available for the Ampro so that
Z-COM is not necessary. However, a number of other computers
running standard CP1M 2.2 use similar techniques and have
similar utilities.

The second class of difficulties arises when the BIOS war
mboot code performs some indispensable function. Remember
that when Z-COM is running, the warm boot is intercepted, and
the warmboot code in the original BIOS does not run. My

The Computer Journal/lssue'29

• Z Best Sellers •
zao Turbo Modula-2 (1 disk) $89.95
The best high-level language development system for your ZBO
compatible computer. Created by a famous language developer. High
performance. With many adVanced features; includes editor. compiler.
linker. 552 page manual. and more.

Z·COM (5 disks) $119.00
Easy auto-installation complete 2-System for virtually any Z80
computer presently running CP/M 2.2. In minutes you can be running
ZCPR3 and ZRDOS on your machine, enjoying the vast benefits.
Includes 80+ utility programs and ZCPR3: The Manual.

Z·Tools (4 disks) $169.00
A bundle of software tools indiVidually priced at $260 total. Includes
the ZAS Macro Assembler. ZOM debuggers. REVAS4 disassembler.
and ITOZiZTOI source code converters. HD64180 support.

PUBLIC ZRDOS (1 disk) $59.50
If you have acqUIred ZCPR3 for your ZBO-compatlble system and want
to upgrade to full Z-System. all you need is ZRDQS. ZRDOS features
elimination of control-G after disk change. public directories. faster
execution than CP/M. archive status for easy backup. and more'

DSD (1 disk) $129.95
The premier debugger for your 8080.280. or HD64180 systems. Full
screen. with windows for RAM, code listing, registers. and stack. We
feature ZCPR3 versions of this professional debugger.

Quick Task (3 disks) $249.00
Z80/H064180 multitasking realtime executive Ivr embedded com
puter applications. Full source code. no run ',me fees. site license for
development. Comparable to systems from $2000 to $40.000'
Request our free C-T Demonstration Program.

~
Z-Sy,tem OEM inqulrtH invited.

_ • Vlsa,.'-'4astercard accepted Add $4 00_I Sh1pOlng.handhng:n North Ameflca. actual

- Echelon, Inc. cost .'sewhe'. Spec,fy d<s' fdrmat

885 :'tl. San Antonio Road· Los Altos. CA 94022
.U5/948·3820 (Order line and tech support) Telex ~931646

BigBoard I with the double-density upgrade automatically selects
from a large number of disk formats. One simply puts the diskette
with the new format into the drive and presses control-c. The
warmboot code in the BIOS includes code for determining the
format of the diskette. When Z-COM is running, I often ex
perience problems when I try to log in a new drive for the first
time or when I try changing disk formats. The trouble seems to
have to do with the way the BIOS keeps track of what drives are
logged in, and by using disk resets or control-c's from Z-COM, I
can often get the system to work. But clearly there can be
problems when the BIOS warmboot code is completely by-passed.

More Named Directories
To get our feet wet again with Z-COM patching, let's start

with a relatively simple but very practical example. The most
frequent request I get from users of Z-COM, especially those
using it to make a remote access system, is for a way to increase
the number of named directories.

To refresh our memories, I have reproduced in Figure 1 the
memory map of our unmodified Z-COM system. Those of you
who are really sharp (or have photographic memories or are
cheating by actually looking at the last issue) will notice that this is
not exactly the same as the map presented last time as Figure 2.
The reason for this is that I recently was offered a deal that I sim
ply could not refuse on a hard-disk Televideo 803H system (every
household needs four complete computer systems, no?). Since I
cannot bear to operate a computer without Z-System, I im
mediately implemented Z-COM on it and have been using it as the
testbed for the techniques described here. It's BIOS is obviously
even less compact than the one on my BigBoard and starts 200H
lower in memory. I hope this address switch does not confuse you

23

'.

too much, but since your system probably does not match mine
anyway, you have to get used to translating addresses. The ad
dresses in the ZC.COM image, of course, do not change.

syoobol

ICPS
ZJN)IR

ZJN)IRS

old expression exp,.esslon

12 lOCH) 6 (0611)
.,.". - 2DOH .,.". • OEDOH

or lop. JOOH
IB 112H) 42 lZAH)

ZC.C04 Addr.ss Syst_ Address

Figure 2. Addresses ot sys'. ca.ponents In the ZC.C(J4 tile and In
the target syst_ as ~Ifled to support 42 n_d d'''ectorles.

Figure I. Addres.... of syst. COIIIlOftents In the ZC.C04 f lie end In the
ex..-ple 5Y51'_ tor whiCh It .as generaTed (Tel.vldeo 8OJ"U.

Now, if we want to have room for more directory names, we
have to find a way to allocate more memory to the NDR module.
Where can we steal some memory? Unfortunately, the memory
cannot be taken from either of the neighbors of the NDR. The
virtual BIOS and shell stack are indispensable. That means that
we will have to move the NDR or something else from its present
position. The best target for our memory raid is that hulking 6
page, 1.5K lOP that often goes unused, especially on remote ac
cess systems. We will cut it down to 3 pages and use the top 3
pages for our new NDR, which will have a capacity for 42 names [
(3 • 256 - 1) div 18 = 42]. The resulting memory map is shown in
Figure 2.

expath
elq)eths
rcp
rcps
lop
lops
fcp
fcps
IJndl,.
vnd'''s
.xl
zJc:ls
l}env
l}envs
shsrt
shstkS
shsll.
....g
""'fcb
extstk
(quiet flog - no sylll>Oll
zJwh'
Icpu speed - no .ymolJ
I... dr I .. lA-I) - no syoobol)
tux user)

dw
db
dw
db
dw
db
dw
db
dw
db
dw
db
d.
db
dw
db
db
dw
dw
dw
db
dw
db
db
db

09
DB
DC
DE
OF
11
12
14
15
17
18
IA
IB
10
IE
20
21
22
24
26
28
29
2B
2C
20

offset STSEHY code line

The new SYS.ENV file can be made either by assembling
SYSENV.ASM with the modified Z3BASE.LIB, or it can be
done by patching (either to the image imbedded in ZC.COM or to
the standalone ENV file). I didn't have a copy of SYSENV han
dy, so I have been using ZPATCH (which is much more fun
anyway). I find that I am constantly in need of the addresses of
various items in the environment descriptor, so to make them
easier to find, I took my copies of Richard Conn's "ZCPR3, The
Manual" and put a 3M Post-It~ (one of those wonderful little
yellow semi-stick note sheets) on page 300 where the SYSENV
module is described. Then I wrote the offsets shown in Figure 3
into the margin next to the symbols. It was thus very easy to
determine that the addresses to patch in the ZC.COM image are
lCllH (lOPS), lC15H (Z3NDlR), and lC17H (Z3NDlRS).

<04> <05> <CC> <04> S T R T <00>

Flgu,.. J. OffseTS to vrlous s'(llbels and Inforaatlon In SYSENY.ASM, the
eftvl,.on-.nt deSO"'lptor -xtule (see "ZCPA:J, The _nual" p. J0011).

The first two bytes are a pointer to the address D504, where the
next command (in this case the only command) to be executed is
stored. They do not have to be changed. The third byte, CCH, is
the maximum number of characters that the command line can
contain. It should not have to be changed, but in fact the value is

The next steps were to assemble up a new version of the
command processor, create the desired NDR me, and then put all
the pieces into the ZC.COM me.as described last time. While I
was at it, I decided that it would be nice if this new version could
co-exist on the system with the previous version, in case I ever
wanted the full lOP space back temporarily. To achieve this, I
made two additional changes in the image and saved it to a file
called ZCl.COM instead of ZC.COM. These two changes were to
the name of the startup alias and the name of the CPR me to be
loaded from A15 by the warmboot code.

The startup command is stored in the multiple command line
buffer, whose image begins at lDOOH. The standard ZC.COM
has the following data there for my Televideo 803H with its real
MCL at D500H:

BAOO - CIFF
ClOD - EFFF
0000 - DIFF
D20D - D2FF
0300 - D47F
DJ80 - D4CF
DJOO - D4FJ
D:lF4 - D4FE
DJFF - D4FF
O4OD - D47F
O4BO - D4FF
O5OD - D'CF
O5OD - D'FF
D600 - DOFF
DEOO - OFFF
EOOO - E'FF

BAOD - CIFF
C20D - EFFF
0000 - DIFF
D20D - D2FF
DJOO - D07F
DJ80 - D4CF
DJOO - D4FJ
D:lF4 - D4FE
D:lFF - D4FF
O4OD - D47F
D4BO - D4FF
D'OD - D5CF
D'OD - D'FF
O6OD - DOFF
DEOO - OFFF
EOOO - E2FF
E300 - E'FF

S,;,st. Address

0200 - 09FF
DADO - 17FF
IBOO - I9FF
IADO - IAFF
lBOO - IB7F
lBeD - lBCF
lBOO -IBFJ
IBF4 - lBFE
IBFF - IBFF
ICOO - IC7F
lCBO - lCFF
1000 - lDCF
1000 - IOFF
IEOD - Z'FF
2600 - 27FF
2BOO - 20FF

020D - 09FF
DAOO - 17FF
lBOD - I9FF
lADO - IAFF
IBOO - IB7F
1660 - IBCF
1600 - lBFJ
lBF4 - IBFE
IBFF - IBFF
ICOO - lC7F
ICBO - ICFF
1000 - lDCF
1000 - IOFF
IEOD - 2'FF
2600 - 27FF
2600 - ZAFF
2BOO - 2DFF

ZC.CCJ4 Address

CPR
ZRDOS
Ylrtuel BIOS
_d DirecTory Register
Shell Steel<
Z3 Message Butt....
External FCS
PATH
\lfheel Byte
Envlron_nt DescripTor"
TCAP
Jl4ultlple ee:-end Line
Erterna I Steck
Res I dent e-nd Peel<ege
Flo- Control Peckage
I/O Pecl<Oge

CPR
ZRDOS
Ylrtuel BIOS
(unused spoe.)
Shell Stack
ZJ Message But fer
Ext....nal Fca
PATH
_I Byte
Env I ron-n't Oeser Iptor
TCAP
Multiple e-nd Line
Erlernal St~

Reslden.,. eo-ond Package
f low Control Package
I/O Peckege
HaIled 0 I recTory Reg 1st....

To implement this change in our Z-COM file we have to
change only the ENV and CPR modules. The ENV has to know
about the new memory map, and the CPR code has to know
where the NDR module is located. Although the NDR module
will be placed in a new location in the ZC.COM file, the NDR
data are position-independent, so the module itself need not be
changed (though we will presumably be adding many new names).
The FCP and RCP are still in the same place doing the same
thing.

One of the new features of Z33, by the way, is the ability to
determine the locations of the NDR, FCP, and RCP from the en
vironment descriptor. Thus if we are using ZCPR33 with this
feature enabled, no change in the CPR code is required.

Only three changes in the Z3BASE.LIB file are required to
reflect the new memory map. These are the definitions for the
symbols lOPS (the number of 128-byte records allocated to' the
lOP), Z3NDlR (the address of the NDR), and Z3NDlRS (the
number of names in the NDR). These changes are as follows:

24 The Computer Journal/lssue'29

wrong. Fortunately, this mistake can only cause trouble in highly
exceptional circumstances, but while we are at it we can put in the
correct value of CBH = 203. The value of the symbol Z3CLS in
Z3BASE.LIB should also be changed. The correct value is the
maximum number of actual chara~ters in the command line. As
can be seen above, there are four bytes before the command string
and one byte (the terminating null) after it. Hence the proper
value for Z3ClS is five less than the total amount of memory
allocated to the multiple command line buffer module.

The fourth byte is the number of text characters in the com
mand line. This value is never used by the operating system, but
the DOS line input function writes. the count to that position, so
we have to provide space for it. If you put a wrong value there, it
will not make any difference, at least not for the operations per
formed here. I have heard that there was at least one utility
program that used this value for some purpose. I do not recom
mend this practice, since some command-line-generator
programs, I believe, do not update the value after they produce
their command lines. I am also not sure whether or not the Z3LIB
routines APPCl and PUTCl update the character count.

To make ZCI.COM use a startup alias called STARTI (6
characters), we would change the.MCl buffer to

<O~> <05> <C8> <06> 5 TAR: T I <00>

This can be done either with ZPATCH or a debugger. If there is a
lot of garbage in the rest of the command line buffer, you can fill
it with zeros out through address IDCFh to make things look
neater.

The file control block for the ZC.CP command processor
image that is loaded from directory AI5 starts at address 1944H.
By changing the space character at address 1947H from 20H to
31H ('I' ASCII), the CPR image ZC1.CP will be loaded instead.
You can also change the message at address 190IH to reflect the
name of the CPR image file. There is room to squeeze two extra
characters into that message, one by eliminating the leading space
and one by omitting the ending period. After you're done with
these changes, don't forget to put the CPR image file ZCI.CP in
A15.

It seems wasteful with this configuration to leave unused the
block of memory where the NDR used to be. When I implemen
ted this version, I moved the multiple command line buffer there
so that I could increase its size from 208 to a full 256. One might
not enter such long commands by hand, but aliases and other
command line generators occasionally overflow the 203 character
limit in the usual configuration. For ZCPR34 I am considering
some techniques for extending the length to a two-byte value so
that the command line can be as large as one would like. I will not
describe the extra changes required to move the command line
buffer, since the next example will cover that and more.

Completely Revamping the Memory Model
We will now consider how we go about completely revam

ping the memory model, including moving the lOP. Moving any
module except for the lOP can be accomplished using a straight
forward extension of what we have already described. The lOP
poses some special problems that we will now deal with.

Before turning to that subject, I would like to make some
general comments about the memory allocation in a ZCPR3
system. With a flXed system - that is, any particular system that
one will use at all times - it does not really matter how the
modules are distributed in memory, just so long as they all fit
somewhere.

The Computer Journal/lssue,29

As soon as one wants to be able to change from one system
configuration to another, not all memory models are as good as
others. I first noticed this when I wanted to run both Z3-DOT
COM and Z-COM on my system. I usually used Z3-DOT-COM
because it left a larger TPA, but occasionally I wanted to make
use of the lOP for redirecting console output to a disk file. At
that point I discovered that Joe Wright's choice of memory
models was a poor one. By adding the lOP at the top in Z-COM
rather than at the bottom, the environment descriptor moved
down to a lower address, and that meant that I either had to have
two sets of utility programs or had to reinstall all the utilities every
time I changed from one system to the other. This provided a
powerful incentive to discover methods for modifying the
memory maps. Of course, with ZCPR33 and its automatic in
stallation of utilities, this is no longer a concern.

Even with ZCPR33 there are compelling reasons to choose
some memory configurations over others. The addresses of most
system components are hard-coded into even the ZCPR33 com
mand processor. However, as we mentioned earlier, the addresses
of the largest memory buffers - the NDR, FCP, and RCP - can
determined dynamically from the environment descriptor in
memory. As a result, if these buffers are placed adjacent to one
another, the single block of memory allocated to the set of them
can be reconfigured simply by loading a new environment
descriptor. Since the command processor does not directly refer
to the lOP, the lOP can also be included at the bottom of this
single buffer space. The tradeoffs that become possible are
illustrated in Figure 4, where a single memory block of 4.25K (the
standard amount in Z-COM for these modules) is allocated in two
different ways.

SAGE MICROSYSTEMS EAST
Seiling & Supporting The Best In 8·Blt Software

• P1u·...rflCt Systems
· Backgrounder II: switch between two or three running tasks

under CP/M ($75)
- OateStamper: stamp your CP/M files with creation, modification,

and access times ($49)
• Echelon IZ·Svatim Softwen)

. ZCPA33: full system $49, user guide $15
• ZCOM: automatically installing full Z·System ($70 basic package, or

$119 with all utilities on disk)
· ZROOS: enhanced disk operating system, automatic disk logging

and backup ($59.50)
• OSO: the incredible Dynamic Screen Debugger lets you really

see programs run ($130)
• SLR Systlllll (Thl UIUIlIItI Assembly lIngu.gl TooII)

• Assemblers: Z80ASM (Z80), SLR180 (H064180), SLRMAC (8080),
and SLR085 (8085)

• Linker: SLRNK
• Memory-based versions ($50)
- Virtual memory versions ($195)

• NlglltOwl (AdvanClCl TlIIcommunlcatlolls,
- MEX·P!us: automated modem operation ($60)
• Terminal Emulators: VT100, TVI925, OG100 ($30)
Same-day shipping of most produC1s with modem download and support

available. Shipping and handling $4 per order. Specify format.
Check, VISA, or MasterCard.

Sage MlcrolYlteml ealt
1435 Centre St., Newton, MA 02159

Voice: 617·965-3552 (9:00 a.m. ·11:15 p.m.)
Modem: 617·965-7259 (24 hr., 30011200/2400 bps,

password = DDT, on PC-Pursult)

25

Figure". One Illustration of how a single block of -=ry can be
dyn_lcally allocated ~g the lOP, R~, FCP, and NOR butfers In II

ZCPR" syst••

In the alternative memory map in Figure 4 the lOP buffer
has been shrunk to a single record, a space just large enough to
hold the dummy lOP that Z-COM comes with (we can't shrink it
to zero without changing the VBIOS). The extra 11 records of
memory are then distributed to the other modules. The NDR in
creases to 6 records, enough for 42 named directories. The FCP
picks up 3 more records. At 7 records, it has enough space to im
plement a very large number of resident test options. The
remaining 4 records go to the RCP, which can probably now in
clude all options in Z33RCP.

Suppose the standard configuration is described by
SYS.ENV and uses the modules SYS.NDR, SYS.FCP, and
SYS.RCP, and that the alternative configuration is described by
ALT.ENV with modules ALT.NDR, ALT.FCP, and ALT.RCP.
Then we would change from the standard to the alternate con
figuration by entering the command

Syst. CoIIponent ZC.CCJ4 Address SYI1'. Address---------- ---------- -------
operating ,s'(st. lW)Qules

0200 - 09FF BAOO - CIFFCPR
ZRllOS OADO - 17FF CZOO - EFFF
Virtual BIOS 1800 - I9FF DOOO - DIFF

large, vrlable buffers
I/O Pod<oge IADO - lFFF 0200 - D7FF
Resident e-nd Pod<oge 2000 - 25FF 0800 - OFFF
Flow Control Pod<oge 2800 - 27FF Eooo - EIFF
_d Directory Reglst.. 2AOO - lAFF E200 - E2FF

third page of buffers
Shell Stock 2800 - lB7F E:500 - E47F
n Messoge Buff.. 2880 - IBCf E'BO - E4CF
External FCB 2800 - lBF' E:500 - E4F'
PATH 2BF4 - lBFE E:lF4 - E4FE
Wheel Byte 2BFF - IBFF E:lFF - E:lFF

second page of buffers
Envlr~'t Descriptor 2COO - IC7F E400 - E47F
TCAP 2CBO - 2llFF E480 - E4FF

top page of buffers
~Itlple e-nd Line 2000 - IOCF E500 - E5Cf
External Stack 2000 - IOfF E500 - E5FF

The first step, as usual, in making a new configuration is to
prepare a new Z3BASE.LIB file. The important addresses in that
file are shown in Figure 6. I have considered each page of memory
to be a unit. The bottom of the page is referenced to the real BIOS
address, and the other modules in the page are referenced to the
base module for that page. Of course, you can express these ad
dresses in many other equivalent ways, and you may well prefer to
do it differently. In any case, with Z3BASE.LIB in hand, you can
assemble up the CPR, RCP, FCP, and ENV modules (or you can
make the latter by patching).

Figure 5. ~y up for a s'(st. designed for dyn8llic buff.,. reallocaTion
under ZCPR".

at the very top of memory. However, ZRDOS has to know where
the ENV is in order to support wheel-locking of files. If you have
purchased ZRDOS separately, you can generate a version to run
at any address and to reference an ENV at any address. If you
only have Z-COM, however, you do not have this freedom.
Therefore, I have left the environment where it was.

RCP (20)

J_ I<P 11)

olternat. configuration

RCP 1161

I ,~""

standard canf Iguratlon

oil
buf fers

4.25K
3" records

to't81 ~p8ee

LOR A!.T.ENY.A!.T.NOR.A!.T.FCP,A!.T.RCP

Note that it is essential that the ENV module be listed, and
therefore loaded, first. If it is not, LDR will not know the correct
addresses for the other modules. Similarly, to change back to the
standard configuration, one would use the command

LOR SYS.ENY. STS.NOR.STS.FCP. STS.RCP

If one were switching back, for example, to use the NuKey lOP to
provide keyboard macro capability, the line could read

LOR SYS.ENY. SYS.NOR. SYS.FCP. STS.RCP.NLKET.I<P

In this way one can make much more flexible use of system
resources. One might choose to reduce the size of the overall buf
fer space to only 35 records, keeping only the lOP stub in the
standard configuration. Then when an lOP like lOR (I/O recor
der) or BPRINT (print spooler) is needed, the RCP and/or FCP
would be contracted temporarily. Either one or both could even
be eliminated (reduced to zero size). Aliases can be used to
automate the process of switching configurations.

Moving the lOP
We will now build a Z-COM system of the form described

above. The memory map for the new configuration is shown in
Figure 5. Since the ENV (including TCAP) is a fixture in any
system, I would have preferred to put it in the invariant position

; DBASE.L18
rblos equ Ge600h

; First page unGer BIOS
Zxl equ rblos - l00h
lxls equ 20'
exts'" equ zxl + OdOh

; second poge under BIOS
zJenv equ rb los - 200h
z3envs equ 2

; Th Ird poge under 810S
shsTk equ rbios - JOOh
shsTks equ ..
shslze .qu 32
z'-g equ shstk + 080h
e.Ttd) equ shstk + 0d0h
expath equ shstk + Of.h
e""oths equ 5
z).hl equ shstk + Offh

; V..-loIlle ..aul..
z,,"dlrs equ 1..
z)ndlr equ rblos - Q.tOOh
fqls equ 4
fql equ lJodlr - fqls"8Oh
reps equ 16
rep equ fcp - rc:ps·SOh
lops equ 12
lop equ rep - lops·8Oh

; Operotlng SYST. c_h
vb los equ lop - 0200h
dos equ vb los - 0e00II
cql equ dos - O8OOh

Figure 6. Adelress equates tor the ZJ8ASE.LfB file corresponding To
the ..-cry configuraTion shown In Figure 5.

We would be able to implement this configuration without any
problem using the techniques we have already seen were it not for
the lOP module. The lOP is really an extension of the BIOS, and
the problem is that the virtual BIOS has vectors Uump instruc
tions) going to the lOP. When the Z-COM system is built by the
loader program ZCLD.COM, the addresses are calculated based
on the assumed relative positions of the VBIOS and lOP. Since
we are now going to change the spacing between them, we will
have to perform some patching on the VBIOS module.

26 The Computer Journal/Issue 1129

Figure 7. 5truc1'ur. of the jUIIP table In the virtual BIOS.

The table of jump vectors in the virtual BIOS is shown in
Figure 7. There are two jumps (warm and cold boot) that are in
ternal to the VBIOS, 7 jumps to addresses in the lOP (6 in one
group and one extra), and IO jumps to the real BIOS. Only the
jumps to the lOP have to be changed.

1001 lOP: JP lOP • 30H ; staTus
<0') JP ICP .. JOH ; device select
1061 JP Ia:- + JOH ; device n_
1091 JP rcp + 30H Initialization
lOCI JP BIOS. 06H ; console status
IOFI JP BIOS. 09H ; console Input
<121 JP BIOS. OCH ; console output
<151 JP BIOS. OfH II st output
<lBI JP BIOS. 12H ; punch OUTput
1151 JP BIOS. 15H ; reader Input
<lBI JP BIOS. 2DH ; II st staTus
IIBI JP lOP • JOG ; new 1/0 routine
IIEI JP lOP • 30H
1211 JP lOP • 30H
1241 JP lOP • 30H
1271 JP lOP • 30H
1301 DB •VI 0f'DI.M4Y . 10 string
1301 Xtll A ; set zero value and flag
OEI RET ; return

You should begin by making a copy of ZCI.COM, which we
generated earlier, giving it the name ZCZ.COM. Then determine
the absolute address of the lOP in your system. Next, go into
ZCZ.COM with ZPATCH or with a debugger and change the ad
dresses. For my Televideo 803H system the lOP had been at
EOOOH and is now at DZOOH. I would look for the seven jumps of
the form "C3 ?? EO" and change them to "C3 ?? DZ".

We also have to make some changes to the code in the dum
my lOP. It has a total of 16 jump instructions, 7 of which refer to
the real BIOS and 9 of which refer to internal addresses. The for
mer need not be changed, but, since we are changing the address
at which the lOP will execute, we have to change the latter ad
dresses. The source code for the dummy lOP is shown in Figure 8.

,.
A Minimum System

If you ever meet me and feel like having a little fun at my ex
pense, just casually make some comment like, "Oh, yeah, I hear
ZCPR3 has some nice features but that it uses up much too much
memory." It is a subject that has become a sore point for me
lately and one that is almost guaranteed to provoke me. To be
honest, however, the persistance of this false impression is to a
large degree the result of poor education on our part. No one ever
talks about minimum ZCPR3 systems; we only describe full
blown ones.

It is true that a full-blown ZCPR3 system uses quite a bit of
memory. Z-COM takes 1600H = 5.SK bytes of memory out of
your TPA, a pretty hefty chunk. I like the features that this big Z
System gives me, and for the kind of work I do, the smaller TPA
almost never causes any problem. For me, the benefits far out
weigh the cost.

For some people, however, especially those working with
voracious memory hogs like database managers and C compilers,
this is not the case. (It seems to me that someone like Steve Russell
of SLR should write a good, virtual-memory C compiler like his
virtual-memory assemblers to prevent this problem.) But the real
answer is that a ZCPR3 system does not have to have every
feature implemented. As with most things in this world, the ZO/80
rule applies: for less than Z0070 of the cost, you can buy more than
80% of the features. If we eliminate all the variable buffers in the
last example, we end up with a system that uses only 5 pages
(I.25K) of memory, a very modest amount. The same system in
stalled in the conventional way, with no space required for the vir
tual BIOS of Z-COM, would take only 0.7SK away from the
TPA, yet all of the following features would still be there:

image. Then the initial path should be set up at address ZBF4H,
and the wheel byte at address ZBFFH should be set to FFH if you
want it on. Finally, if you want an error handler to be loaded
when Z-COM is booted, then patch in the error command line
(for example, "AO:Z33VERR < 0 > ") at Z3MSG + lOH (ZB90H
in ZC2.COM).

If everything has gone right, and I have not left something
out or written something wrong, you should be ready to test it
out. Don't forget to put the command processor image files in
A1S. I know I keep harping on this, but while working on this ar
ticle, I forgot to do that on one occasion, and there are now a few
dents in the table from my fist!

; col dl>Oot
; .arllbOot
; console status
; consol e I"put
; console out
; list out
; punCh out
; reader In
; he-e disk
; select disk
; s.t track
; set sector
; set l)Il4A
; read s.ector
; .r It. sector
; II st status
; sector translation

VBIOS • 67H
VBIOS • 67H
lOP • OCH
ICP .. OFH
lOP. 12H
lOP • 15H
lOP • IBH
lOP • IBH
BIOS. IBH
BIOS. IBH
BIOS. IEH
BIOS. 21H
BIOS. 24H
BIOS. 27H
BIOS. 2AH
lOP • IEH
BIOS. 30H

1001 VBIOS: JP
1031 JP
1061 JP
1091 JP
lOCI JP
IOFl JP
1121 JP
115l JP
IIBI JP
IIBI JP
(lEI JP
121 I JP
1241 JP.
1211 JP
12M JP
1201 JP
001 JP

Figure B. Source code for the d..-y lOP In Z-COl. All tile Int.-na' routl ..s
sl.-ply retu,.n with the zero flag seT, while The substanTive functIons are
--,"orad off to tile real BIOS.

The garbage that appears from address lOP +3FH to the end
of the lOP at lOP + SFFH can be mled with zeros to make things
look neater. Then the 9 internal vectors have to be modified in the
same way those in the BIOS were to point to the new address of
the lOP. Finally, the reconfigured lOP has to be moved from its
present position at 2800H to its new place in ZC2.COM at
°IAOOH.

While we are in the debugger doing that, we can also change
(I) the me control block to load the command processor image
ZC2.CP (and also the 'not found' message) and (2) the multiple
command line buffer to run STARTZ. This initial multiple com
mand line must also be moved from its old address at lDOOH to
its new position at ZDOOH. Make sure that the second byte in the
command line buffer points to the page where the real multiple
command line buffer will be.

You should then fill all the other buffers with zeros. The
CPR, RCP, FCP, and ENV modules can be loaded into the

automatic command search path
flexible access to user areas
multiple commands on a line
aliases
shells (including history shell and mer shells)
extended command processing (including ARUNZ command
generator)
powerful error handlers (with command editing)
terminal-independent operation (TCAP)
flexible program loading (type-3 environment)
interprogram communication

The only things missing are named directories and flow control.
Some simple flow-control-like features could be implemented
even without the FCP. With all the security features and named
directory support removed from the command processor, there is
room for many more CPR-resident commands, and the ones that
won't fit can be implemented as virtual residents using the new
type-3 environment. In summary, a very powerful system can be

The Computer Journal/lssue'29 27

F Igora 9. Mera,.., of ,y,t_ CClIIpOnellt, In tile ZC'.COM f lie end In tile
target I,st_ for a _Inl __ contlgura1'lon .1111 no lOP, RCP. Fa', or NOR.
Tile I lie I, 2EOOH - loooH • I lOCH • 4.251<. ,lIortar then tile other _,Ion,.

Figure 10. TIle ZJIII\SE.LI8 equat.. fer a .Inl_ ,y,t_ that tak.,
only 0.751<. ler tile ZCP!U buff.., and 0.51<. fer the virtual 81eS
required for autc:.e'tlc 1"11'81181'1011.

are the places where the code prints out in-line strings. You will
typically see a call instruction followed by very strange code. That
strange code is the text to be printed. That coding technique is
very convenient for the programmer (and I use it all the time), but
it makes disassembly and single-stepping in a debugger much
more difficult. When you encounter code like this, you have to
use the dump ('D') display to locate the null (binary 0) that marks
the end of the string. Then you can continue running using the
command "G,addr", where 'addr' is the address just after the
null.

Anyway, at address 18tH you will find the key instruction:
LD B.C.,2COOH. This must simply be changed to LD
B.C.,IBOOH. That's all there is to it - as far as the loader code is
concerned. You might wonder why we don't have to change the
starting address for the load, since it is not the same as before.
The answer is that Z-COM derives it from the initial jump instruc
tion in the CPR image. My fIrst versions of Z33 used a relative
jump, and I had to put the absolute jump back after one of my
beta-testers pointed out that it would not work with Z-COM.

Now we have to face two much more difficult problems:
both the VBIOS and the ZRDOS modules have to be relocated to
a new address. How can we possibly do this without source code?
Well, if you purchased a separate copy of ZRDOS, you have a file
with a name like ZRDINS.COM with which you can create a
binary image of ZRDOS that will run at any address and with any
ENV address. But what if you don't have it? And what about the
VBIOS part? The latter could conceivably be disassembled, since
the code is not very long or very complex, but there is a better
way, one that makes use of the built-in capabilities of the auto
install package.

If you had two computers with different BIOS entry ad
dresses, you could perform a standard installation of Z-COM on
each system. By taking the two ZC.COM flies and subtracting
them in a debugger, you could derive the relocation map. Now the
question is how we can make two ZC.COMs using a single com
puter.

If you examine the beginning of the code in ZCLD.COM,
you will see that ZCLD keys its system generation to the address
of the BIOS warmboot vector at address 0001, and that is what we
will base our strategy on. We will fool ZCLD into making us two
versions of ZC.COM one page apart that we can subtract.

With my standard Z-COM system running on the Televideo
803H, the CPR is at BAOOH and the virtual BIOS at DOOOH.
Thus the vector at address 0001 points to D003H. By entering the
following commands, we can make the BIOS look as though it
were at B900:

CBOO - DIFF
0300 - EOFF
Eloo - E2fF
E30D - E47F
E:580 - E4CF
E30D - E4f'
E:lf4 - E4fE
E:lfF - E4fF
E400 - E47F
E480 - E4fF
E'OO - E5CF
E5DO - E~F

5yst_ Address

0200 - 09FF
OAOO - 17FF
1800 - 19FF
tACO - lATF
1A80 - l1a
lACO - lA1"
lA1'4 - lA1'E
IAI'F - IAI'F
1800 - 18TF
1880 - IBFF
lCOO - ICCI'
lale - leFF

CPR
ZROOS
Virtual 8105
Sllell Stack
ZJ Massage Buffar
Extarna I FeB
PATH
_18yta
EnvlronMnt Qascrlpter
TCAP
Multlpla ea.and Line
EJrtarnal $t/Kk

First we have to make Z3BASE.LIB, the equates for which
are shown in Figure 10. The only subtle change is in the way the
VBIOS address is defined. Make sure you do not define it in terms
of any of the modules whose addresses have been set to zero to
disable them or you will get extremely strange results.

; ZJ8ASE.LI8
,.blol equ 0e600It

; First page under BIOS
Ixl equ rblos - l00h
zok I, equ 20'
e)(1'stt!. equ zx I + OdOh

; Secoftd page undar 8 IOS
zJeny equ rblos - 200h
zJ-tnvs equ 2

; Third page under BIOS
shsttl. equ rblos - JOOh
ShlTks equ •
shs I ze equ J2
z.loosg equ 'h,tk + 080h
extfcb equ ,h,tk + OclOll
e"Path equ ,han + Of4h
expo1'''S equ 5
Z"'h I equ shltk + otth

; Varlaole ~ul.s - all dlHtJled
z,"(U,.s equ 0
zJndlr equ 0
Icp, equ 0
fcp equ 0
rcp, equ 0
rep equ 0
lop, equ 0
lop equ 0

; Operet I"g syst. CClIIpOnellts
yblos equ 'hstk - O2OOh
_ equ vblos - QeOOh
ccp equ dos - 0800h

built with a very small cost in TPA.
To prove this point (and because it will be useful on those

rare occasions when I run my database manager), I decided to
develop a version of Z-COM that would have only the three pages
of core modules. The memory map is shown in Figure 9. It differs
in two fundamental ways from all the other maps we have seen:
(I) it is shorter and (2) the real VBIOS and ZRDOS run at dif
ferent addresses than usual. These differences will require some
new techniques, and we will cover them shortly.

f'a(E 890' CE 0' DO;f'a(E 2 B9;ZCLD;REN ZCB9.CCJ40ZC.C~

f'a(E BBOJ CE 0' 00;f'a(E 2 88;ZCLD;REN ZC88.C04-ZC.C(J4

Of course, you must use addresses appropriate to your system.
Any address below the CPR but above the memory used by
ZCLD should work.

With this patch in place, everything will be fine so long as we
do not try to run a program that does direct BIOS calls based on
the address at 0001. (If we do? - the system will simply go up in
flames!) In case you're worried, the next warmboot will delete our
patch and restore things to normal.

Fortunately, ZCLD does not mind being fooled this way. All
in all, the following sequence of commands will result in two files,
ZCB8.COM and ZCB9.COM.

The basic procedure for creating this system is very much like
what we have done before. We edit the Z3BASE.LIB file and
assemble up the CPR and ENV modules (or make the latter by
patching). There are no FCP, NOR, or lOP modules to worry
about. We set up the path, the wheel, and the error handler; we
change the VBIOS file control block to load ZC3.CP for the CPR
image file and change the 'not found' message to match; and we
put in the ENV and CPR modules.

Now we have to face the new complications that arise
because of the change in size of the file. First we will take up the
simpler problem - changing the loader code in the first page of
the me. It normally copies 2COOH bytes (from 200H to 2EOOH)
up to the run-time location in memory. Now the image part of the
flIe is only lBOOH bytes long. If you follow through the loader
code in a debugger, you should not have too much difficultly
figuring out what is going on. The hardest parts to trace through

f'a(E 890' C, 0' 00
f'a(E 2 89

; Set up JP DOOJH I'" address B90JH
; Chenge b10' vecter fro- 0003 to 890'

28 The Computer Journal/Issue 129

We can then load both files into a debugger using the commands

Now from right in the debugger we can assemble a little
program at 3000H to subtract the ZRDOS and VBlOS images in
memory block OAOOH-19FFH from the images in memory block
3AOOH-49ffH to give us the relocation map we need. Here is how
the entry of the assembly code proceeds:

Enter the command "03000,3013" to run this routine with a
breakpoint -at 3013, If you look at memory from 3AOOH TO
49FFH you will see a pattern of Is and Os. This is the relocation
map. It indicates which bytes must be changed to shift the
execution address of the code,

Now we have to relocate the ZRDOS to run at D300H and
the VBIOS to run at EIOOH instead of the values 9400H and
A200H as they are in the image in ZCB8.COM (determined by in
spection with a debugger). Thus we have to add an offset of 3FH
(EI - A2) to all bytes where the relocation map has a one in it. So
we assemble up another little program at 3000H as follows:

'''I

Plans for Next Time
Whew! That was quite a session of heavy technical material.

I don't know yet exactly what I will do next time, but I certainly I
will find a less technical subject. You need a rest, and I need a
rest. If you have any questions or suggestions, please write or caD.
See the ad for Sage Microsystems East for the address and phone
numbers.•

This alias would load the minimum Z-COM system to give the C
compiler the most room to work, and then once the compilation
was finished it would reload the full Z-COM configuration. I did
this with my Z3-DOT-COM/Z-COM combination. The 110
Recorder lOP was invoked using an alias. The alias would flfSt
check to see which Z-System was running (that is what I put the
$M param~ter into ARUNZ for). If it was Z3-DOT-COM, then
alias would load Z-COM before proceeding to load the lOP. I will
not go through the method for accomplishing this, but I will give
you a hint. You have to change the loader code in the first page of
ZCx.COM so that the multiple command line buffer and some
other system information is not overwritten by the load.

At 29DH, the code loads the address of the BIOS with the in
struction "LD HL,(l)". We know that we want the system to be
generated at an address IIOOH higher than it would be normally
because of all the modules we removed. Since the normal BIOS
address was E600H, we want ZCLD to see a value of F700H, To
accomplish this, we assemble in the instruction "LD HL,F700", a
direct load instead of an indirect load to HL. We can then save
away this modified version as ZCLDl.COM, When we run it, it
very nicely produces a system with a ZRDOS and VBIOS at just
the addresses we wanted.

There is one other change I have forgotten to mention. The
jumps in the VBIOS that go to the lOP have to be replaced by
jumps to the real BIOS at the very same offset as in the VBIOS.
Thus the jump at offset 06, which was "IP lOP +OCH", would
become"JP BIOS +06HO" .

Switching from One Version to Another
What if we are running one of our versions of Z-COM and

want to change to another one. We can always run the ZCX
command to get back to CP1M and then load the new Z-COM
system. This seems unnecessarily tedious. Why can't we just run
ZC2.COM from the ZCI system? The answer is that Joe Wright
did not want us to do this. Of course, he was thinking in terms of
only single configurations, and then there would be no reason to
run ZC.COM when Z-COM was already running. So, he put in
some code to protect us from this mistake.

Now we want to do that very thing! How can we disable the
safety code? Very simply, It is based on the same check we
described with the ZCLD program. It looks for a 'z' at byte 42H
of the BIOS or VBIOS. If it is a VBIOS, the 'z' will be there; if it
is a real BIOS, it would be very unlikely that a 'Z' would be there.
We could go into the code itself as I described with ZCLD and
disable the test. Alternatively, we could do something much sim
pler (and reversible): go into the VBIOS and remove the 'z' by
changing it to something else. A third possibility, one I implemen
ted for the fun of it, is to write a little utility program that finds
that byte of the BIOS. If it is not a 'Z', it simply returns; if it is a
'Z', it sets it to zero. Then the next ZCx can load over it. If the
utility is not run, then the system cannot be overlaid.

I will suggest one last modification to Z-COM to enhance it
even further. That is a change to allow alternative versions of Z
COM to be loaded without interrupting the flow of commands.
Thus your memory-hungry C compiler would be invoked with an
alias the reads something like: RUNC zc3;c S";zc2

set f II. to ZC88.CCJ4
reed In at 1OOH (1 001+- 2OFFH)
set I II. to ZC89.C()l
r.ad In at Jl00H lJIOOH-~OfFH)

; loop throu9h looon byte.

; check thoe count

; point' to relocation byte
; point to ZROOS/YBIOS we a". creating
; n~ of byTes to cov.,.
t get current' va I ue of byte
; see It "'elocatlon up has IS 1 'n It
; It not, y,lp the offset addition
; add tha of hat
; put beck the CO('"rec"ted by"te
; Incre.ent thoe pointers

; loop through l000H byte.

; 581' up polnt..-5 to two files

; nutlber" of bytes to subtract
; get byte Ire. higher luge
; 'ubtract byte Ire. 10.... luge
; put result (0 or 1) back
; Incr-.nt the pol "1'.,.,
; ctwtck count

IZC88.C()l
R
IZC89.C()l

RJOOO

-~

JOOO LD IJ€, JAoo
JoeJ LD ~,Aoo

JOO6 LD 8.C., 1000
JOO9 LD A, (IJ€)
JOOA Sill (HlI
JOOll LD (IJ€) ,A
JOOC INC ~
JOOO INC IJ€
.lOOE DEC 8.C.
JOOF LD A,8
J010 III C
JOll JR HZ ,J009
JOD

-~
JOOO LO ~,JAoo

JoeJ LD DE. 1ADO
JOO6 LD 8.C. ,1000
JOO9 LD A,IDEI
JOOA 81 T 0, (HU
JOOC JR Z,JOll
JOOE ADO A, Jf
JOIO LD (DE) ,A
JOII INC ~
J012 INC IJ€
JOD IJ€C 8.C.
JOI4 LD A,8
JOI5 III C
J016 JR NZ,J009
J018

Run this program with "03000,3018" and you will have a ZR
DOS and VBIOS that will run at the required address. Put them
in a safe place temporarily while you load in ZC3.COM and then
move them into the proper place in the image. This completes the
generation of the minimum system except for one step described a
little later.

Although all that work with the debugger took quite a lot of
space to describe,it is really not that difficult to do. I particularly
wanted to show it to you because it is a technique that is useful in
many other circumstances as well (like using MOVCPM to
relocate your system in one-page rather than IK increments).
Now, however, I will show you a much easier way to accomplish
the same thing in the case of Z-COM.

Ifyou load ZCLD.COM into the debugger and trace through
the code with the'L' command, you will see how it works. Before
one gets to the main code, there are two places where checks are
made. One is to see if the command was invoked as "ZCLD II"
to request the built-in help screen. The second test is to make sure
that you are not trying to run ZCLD from inside a running Z
COM system. We could drop out of Z-COM after making the
changes I am about to describe, but why put up with that trouble?
The code is testing for the presence of the letter ·Z' in the
copyright notice inside the VBIOS at offset 42H. At address 249H
there is a "IP NZ,29D" instruction that takes one to the system
building code if no 'z' is detected. If we change this to an uncon
ditional jump, we will effectively disable the test.

The Computer Journal/lssue'29 29

Z sets you free!

$50.00 (1 disk'

$51.00 (ldiskl

$49.95 (1 disk'

$85.00 (1." sub)
$69.00 (1 disk'

$69.95 (1_)
$75.00 (2_)
$59.50 (1 disk)
$69.95 (3_)
$69.95 (2 disks)

$49.00 (ldisk)
$149.00 (9-1
$89.95 (Idiskl

$90.00 (Idisk)
$1119.00 (4_)
$129.95 (1 disk)
$99.00 (8_)

Pnat
$0&9.00 (3 dosils)
$89.00 (10 dlsI<s)

$119.00 (5 disks)'

nem Name, ZCPRJ ConI 1__p~

2 ZCPRJUtiIiliesP~

5 Z-Com (AuIo-lnslaI Compiele
Z·S_1

6 Z-Com"8anl lAinimum'
10 BGio B8ci<Qr0undllt 2
12 PIJIllIC ZROOS Plus (by~
13~ Z·Syshlm-.. 0001<
14 __ MOO Z·Syshlm

-..0001<
16 QUICK·TASK_

ExeaA!Ye
17 o-5Iamper fiIe..

aM1IW'lI18 __ Updal. 5eMce
20 ZASlZLINK Macto__

..:Ilrier
21 ZDM~ 100' 808O/ZIIOI

H064180 CPlf.
22 TransIalDrS lot__

Soun»COCllI
23 REVAS3I4Dis..._
24 Specal nems 20 1IVougll23
25 DSO-«l FIJI sa-. 0lIbugger
'Z7 The I..JbrIIneI.SYSLlB. Z3lI8.

..:IVlIB
28 Grap1ic:s..:l W_1..JbrIIneI
29 Specal_ 27. 28. and 82
30 Z80 Turtlo _-2~

srs-
40 Ir1lUlIOuIPulRecotller lOP (IIORI $39.95 (1 disk)
41 B8ci<Qr0und Printer lOP(-I $39.95 (1 disk'
44 NuKey Key __ lOP $39.95 (I disk'

45 Specal_ 40 1IVougll44 $89.95 (3_1
80 DISCAT 0001< calIlogong s,-n $39.99 (I diskl
81 TERM3 Communications srs- $99.00 (6_)
84 Z-Msg ,-,-lWIdIing srs- $99.00 (I disk)
66 JelFond SIring s-ctl UtiIiIy $49.95 (I disk)
81 ZCPR3: The Manual bound, 350 _ $19.95
82 ZCPR3: The Libraries 310 _ $29.95
83 Z-NEWS _,1 ."~ $24.00
84 ZCPR3 and lOPs 50 _ $9.95
85 ZROOS Progranwnet'. _ 35 _ $8.95

88 Z-srs- U.... G.- 8O.-ue _ $14.95

• indudIIs ZCPRJ: The _

text files of all sons • straight ASCII. WordStar.
library (.LBR) file members. "squeezed" files,
and "crunched· files. JetAnd is very smart and
very fast. faster than any other string searcher
on the market or in the public domain (_ know,
_ tested them).

SoftwII,. Update 5ervlce
We _re suprised when sales of our

Software Update service (SUS) subscriptions
far exceeded expectations. SUS is intended
for our customers who don't have easy access
to our Z-Node network of remote access
systems. At least nine times per year. _ mail
a disk of software collected from Z·Node
Central to you. This covers non-proprietary
programs and files discussed in our Z-NEWS
newsletter. You can subscribe for one year.
six months. or purchase individual SUS disks.

There', Mo,.
We couldn't fit all Echelon has to offer on a

single page (you can see how small this
typeface is already!). We haven't begun to talk
about the many additional software packages
and publications we offer. send in Ihe coupon
below and just check the "Requesting Catalog"
box for more inlormation.

BGII (Backgrounder 2)
BGii adds a new dimension 10 your Z-System

or CP/M 2.2 computer syslem by creating a
"non-concurrent muMasking extension" to
your operating system. This means thaI you
can actually have two programs active in your
machine. one or both ·suspended". and one
currently executing. You may Ihen swap back
and fonh between tasks as you see fit. For
example. you can suspend your lelecommuni
cations session with a remote computer to
compose a message with your full-screen
editor. Or suspend your spreadsheelto look
up information in your database. This is very
handy in an office environment. where constanl
interruption of your work is 10 be exP8Cted. Irs
a significant enhancement 10 Z-Syslem and an
enormous enhancement to CP/M.

BGii adds much more than Ihis swap
capability. There's a background print spooler.
keyboard "macro key" generalor. bui~-in

calculator. screen dump, Ihe capability of
cutting and pasting text between programs.
and a host of olher features.

For best results. we recommend BGii be
used only on systems with hard disk or
RAMdisk.

.letAnd
A string search utility is indispensible for

people who have bui~ up a large collection of
documents. Think of how difficult il could be 10
find the documenllo "Mr. Smith" in your
collection of SOO files. Unless you have a
string search utility. the only option is to
examine them manually. one by one.

JetFind is a powerfUl string search utility
which works under any CP/M-eompatible
operating system. II can search for strings in

Echelon also offers "boatable" disks lor
some CP/M computers. which require
absolutely no installation. and are capable of
reconfiguration 10 change ZCPR3's memory
requirements. Boatable disks are available for
Kaypro ZSO and Morrow MD3 computers.

Z80 Turbo Modul.2
We are proud 10 offer Ihe finest high-level

language programming environment available
lor CP/M-eompatible machines. Our Turbo
Modula-2 package was created by a famous
language developer. and allows you to create
your own programs using Ihe latesl technology
in computer languages - Modula-2. This
package includes full-screen editor. compiler.
linker. menu shell. library manager. installation
program. module library. the 552 page user's
guide. and more. Everylhing needed 10
produce useful programs is included.

"Turbo Modula-2 is last...[Sieve benchmark]
runs almost three limes as fast as Ihe same
program compiled by Turbo Pasca/...Turbo
Modula-2 is well documented...Turbo's librarian
is excellent· - Micro Comucopia #35

Z-System
Z-System is Echelon's complete disk

operating system. which includes ZCPR3 and
ZRDOS. It is a complete 100% compatible
replacement for CP/M 2.2. ZRDOS adds even
more utility programs. and has the nice leature
of no need 10 warm boot (AC) after changing a
disk. Hard disk users can take advantage of
ZRDOS "archive" status lile handling to make
incremental backup last and easy. Because
ZRDOS is written to take full advantage of the
ZBO. it executes faster than ordinary CP/M and
can improve your system's performance by up
to 10%.

ZCPR 3.3
Echelon is famous lor our operating systems

products. ZCPR3. our CP/M enhancement.
was written by a software prolessional who
wanted to add features normally found in
minicomputer and mainframe operating
systems to his home computer. He succeeded
wonderfully. and ZCPR3 has become the
environment of choice for "power" CP/M
compatible users. Add the fine-tuning and
enhancements of the now-available ZCPR 3.3
to the original ZCPR 3.0. and the resu~ is truly
flexible modem software technology.
surpassing any disk operating system on the
market today. Get our catalog lor more
information - there's four pages of discussion
regarding ZCPR3. explaining the benefits
available to you by using it.

Who_a,.
Echelon IS a unique company. oriented

exclusively toward your CPIM-compatible
computer. Echelon offers top quality software
at extremely low prices; customers are
overwhelmed at the amount of software they
recieve when buying our products. For
example. the Z-Com product comes with
approximately 92 utility programs; and our
TERM III communications package runs to a
full megabyte of files. This is real value lor your
software dollar.

In'talllng ZCPR3IZ"System
Echelon offers ZCPR3IZ-System in many

different forms. For $49 you get the complete
source code to ZCPR3 and the installation fil8s.
However. this takes some experience with
assembly language programming 10 gel
running. as you must perform Ihe installation
yourself.

For users who are not qualified in assembly
language programming. Echelon offers our
"auto-install· products. Z-Com is our 100%
complete Z-System which even a monkey can
install. because il installs itself. We offer a
money-back guarantee if it doesn'l install
property on your system. Z-Com includes many
interesting utility programs. like UNERASE.
MENU. VFILER. and much more.

(=il Echelon, Inc.
885 N. San Antonio Road, Los Altos, CA 94022 USA
415/948-3820 (order line and tech support)
Telex 4931646
NAME _

ADDRESS _

TELEPHONE DISK FORMAT _

o REQUESTING CATALOG

ORDER FORM

Payment to be made by:
D Cash
D Check
D Money Order
D UPS COD
D MastercardlVisa:
#
Ex-p-."Oa--:t-e-------

Califomia residents add 7% sales tax.
Add $4.00 shippinglhandling in Nonh
America. actual cost elsewhere.

ITEM

Subtolal

sales Tax

ShippinglHandling

Total

PRICE

30 The Computer Journal/Issue 129

68000
Why use a New OS & the 680001

by Joe Bartel, Hawthorne Technology

Why Work With a New Operating System?
The small computer market is caught between two ruts

today. On the small side is the PC and on the large side is Unix.
The other players missed the boat by having a great (or so they
thought) interface with nothing behind it to do any useful work.
To be PC compatible is a dead end. The system is a kludge.

As developers try to squeeze the last bit of performance from
the PC there will be problems. It is true that there are several
million PCs in the world today. This doesn't mean there is a good
market. Because the market is so large, it is hard (and expensive),
for a small company to make themselves heard. There are public
domain or low priced programs for every common application
that anyone wants. These are hard to compete with. The pressure
is to continue lowering prices while cutting profits. A business
person needs to look at what point he can no longer afford to
remain in this kind of market.

To break out of this rut a new system architecture is needed.
Use the PC and clones where they fit but start to forge ahead in
new directions. This doesn't mean trying to run a PC program on
another machine. It is possible to emulate an 8086 on a 68000 but
a full PC emulation is not worth while. In every case so far the
emulation costs more than a PC clone. The interchange of disks
on the other hand is very economical and easy to do. This protects
the investment in data and makes it possible to add new machines
without giving up the old ones.

The first step to :1 new architecture is to have a new operating
system. It must be indpendent of a particular piece of hardware.
This doesn't mean an operating system that can run on any
processor. It means not being tied to a limited set of hardware like
MS-DOS got tied to the PC hardware. The second step is to
separate the application programs from the operating system it
self. To use networks or multiple processors there must be a clear
distinction between the logical and physical structure of the
machine. To do otherwise would be to set a limit on what can be
done with the operating system.

Bit map graphics and mice are good in some cases but to
hobble an entire system with tricks that are not often needed or
used is bad. The original use of mice was to allow people who
knew little about computers to retreive information from them.
They were not ones who had to put information into the com
puter or the more experienced users who want low cost and high
performance. The operating systems like Mac and Atari are com
plex to the point where they hinder the development of new
programs rather than helping. The windows that Microsoft has to
sell are no better. Look at any stock broker. they have mulitple
screens for dealing with different pieces of information at the
same time, not tiny windows on a single screen.

A very promising area to look at for the future is multiple
processor machines. With them, when more users are added to a
system, more processing power is added also. This makes it
possible to have multiple access without the slow down problems

The Computer Journal/lssue'29

associated with trying to share a single CPU among many users.
For cost sensitive or low performance users the muliple user ap
proach can be used for lowest cost. For applications where high
performance is important multiple processors can be used. If the
operating system is independent of the hardware then the same
program can be used in both cases.

Another area where multiple processors can be used to ad
vantage is to split the operating system into component parts. For
example the file management system can be duplicated for each
disk in the system. Then when opening a file on disk A there
would be no operating system overhead imposed on the system
running disk B. If a disk is not involved then it would take no part
in the activity. This allows large numbers of users to all access
files at high speed if the load is balanced among different disks. A
remote disk and file system can be like a new resource that can be
easily added and integrated into a system. A company system can
start small and grow to almost any size without requiring that the
existing parts be replaced.

An individual workstation can have graphics and icons or
not as need or tastes dictate. This will allow some users to access
the system with icons but not impose that structure on other users
of the system. It also means that some users could have windows
and others could have more than one screen. Some users could
have a local floppy disk or printer too. This approach to things
opens a wide area of possible designs for working.

It is time to start planning for the future while the present
generation of computers is still adequate for today. If we don't
start now we won't have the next generation when we need it. At
Hawthorne Technology we are working on new ways of doing
things. All of our programs are compatible with K-OS ONE at the
system call level. Our hardware varies a lot. We even use PC
Clones for some things. But any program that uses K-OS ONE
system calls to access the hardware, and doesn't depend on special
terminals, will run on any K-OS ONE system. We intend to keep
this compatibility in the future for all systems whether
distributed, multitask or single task. You can join us in this by
using K-OS ONE or by writing applications to run with it. The
number of people using K-OS ONE is increasing every day. There
is a growing market for Languages and application software.
Anyone interested in doing a package should contact us. We will
help out in any way we can.

Why Use a 68ooo?
Most of the time it is not easy leaving an old processor and

going to a new one. On the old processor you are an expert and
know all the small things that can and will go wrong. When you
switch to a new processor you have to start all over again. So why
switch?

The 8 bit machines are limited and there is little room to grow
with them. The 68000 on the other hand has enough growth
potential to last for many years to come. There are other 32 bit

31

processors, but none of the others offer the same advantages as
the 68000.

After you start working with it, you will find that building
hardware with the 68000 is as easy or iq many cases easier than
building the same thing with an 8 bit processor. For small con
troller projects there is even an 8 bit bus version (the 68008) that
comes in a 48 pin package. The 68000 and 68008 both have an E
clock signal output that allows you to directly connect any
peripheral device from the 68xx or 65xx families.

In most cases, the cost of doing the software for a project is
many times the cost of the hardware. All of the software cost has
to be paid for before the first unit is shipped. Hardware is paid for
as units are sold. The 68000 is easier to program than the smaller 8
bit machines. The mistake many people make is the idea that just
because you have 16 registers you have to use all of them. You
don't. Just use the parts that you want and ignore the rest. After
you have some experience you can start using the other comman
ds and addressing modes.

Inline code and programs in general can be as small for the
68000 as for any 8 bit machine. The reason many current
programs are so large is that they were written for the 8086
processor family, which is sloppy and many of them are written in
higher level languages with compilers that don't generate very
good code. What was several lines of code for a Z-80 or 6502 can
often be done with a single instruction in the 68000.

The main limitation for the 8 bit machines is the small
memory space and the small size of the registers available. If you
want to work with more than 64k of memory you have to have
registers that are big enough to hold an address. This means that
without a full 32 bit register you will spend lots of time and effort
working on address pointers that sould be trivial.

The 68000 is much faster than an 8 bit machine for arithmetic
and full size pointer manipulation. For simple 8 bit operations
like those encountered in text editors it is true that the Z-80 is very
hard to beat. But if you need more memory to edit a large file or a
lot of features are added to the editor, things become difficult.
With a large address space you don't have to page parts of the
program into memory from the disk. For spread sheets and
arithmetic, the larger register size of the 68000 is faster by far.

When you look at the small cost difference between the
68000 and the older machines the choice becomes easier. Keep the
8 bit machines for existing products or for very high volume or
where there is not much programming involved but for new
products go with the 68000. It is easier to program, faster, and has
more of a future.

Starting With HTPL
Welcome to HTPL programming. If you are familiar with

Pascal, Modula or Forth then HTPL will have many parts that
you already know. From Forth we borrowed the use of RPN
notation for expressions. From Pascal and Modula we borrowed
a structure. HTPL is good for writing small, fast programs. It can
also be extended to fit any special needs in other programming
areas.

To start learning any new language it helps to see a complete
example in that language. The example can then be related to the
same program in a language you are more familiar with. This
example is a simple but complete HTPL program that displays
"Hello World!" on the console.

The first line is a comment. When anything is placed in
parenthesis in an HTPL program it is treated as a comment and
ignored. The word "root" indicates that this is not an overlay,
and tells the compiler to include the runtime library with the

32

generated object code. The word "program" tells where the
program will start executing when it is run. The main part of the
program continues until the first "end". The second "end" in
dicates the end of the entire file being compiled. The words in the
double quote marks are a string cOnstant. When a string constant
is encountered the contents of the string are saved in a data area
and the address of the string is placed on the evaluation stack.
The word "sprint" is a call to a run time library routine to print
the null terminated string. The 13 is the numeric value of a
carriage return character. It is pushed On the stack. The word
"putc" is another library routine that prints the low 8 bits of the
top of the stack as a single character. The "10 pute" sends out a
linefeed character.

Sample Program
root
program

"Hello World!" sprint
13 putc 10 putc
end

end

This is a complete HTPL program. When it is run it will
display "Hello World!" on the terminal. Most of the tokens are
refered to as words in HTPL just like in Forth.

Editor's Note: When this file is compiled, the executable BIN
file including the run time library is only /,446 bytes. This is much
smaller than a similar Pascal or C program.

HTPL Compile and Run
To compile and run an HTPL program you first write the

program using any editor. The compiler assumes that all charac
ters have the high bit a zero. The output of the compiler is an
executable binary file.

To compile a program type HTPL at the command line
prompt. After the compiler is loaded it will prompt for the name
of the first input file. Next it will prompt for the name of the out
put file. Any extension can be given for the output file but the
command processor will only try to load and execute files that
have the extension" .BIN". Next you will be prompted for op
tions. If you enter an "N", there will be no listing of the source
code as the program is compiled. If you put an'S", there will be
no symbol table listing after the program is compiled. The options
can be given in any order. The complier reads the source program
and any files involved twice. The run time library hex file "HT
PLRTL.HEX" must be on the default drive for the compiler to
find it. An overlay doesn't include the runtime library so it is not
needed. You can include as many source fIles as you want at com
pile time so each source file can be kept small to be easier to edit.

Stack Notation
The commands in the manual have acomment describing the

stack before and after the call to the routine. This is necessary
because in a stack oriented programming environment the
programmer has to keep track of the stack. Errors in the size of
the stack is perhaps the most common kind of error made.

The letters or words before the "--" are the contents of the
stack before the call. The top of the stack is on the far right hand
side. The words or letters after the "--" are the contents after
returning from the routine or after the word is executed. If a word
appears before and not after it has been used up. The number of
items before and after the call indicate how the stack will grow or
shrink when the routine is run. If a routine calls itself then this

The Computer Journal/Issue 129

For your existing 68000 hardware, you can get the K-OS ONE
Operating System package for only $50.00. K-QS ONE is a powerful,
pliable, single user operating system with source code provided

for operating system and command processor. It allows you to
read and write KS-DOS format diskettes with your 68000 system.

The package also contains an Assembler, an HTPL (high level
language) Compiler, a Line Editor and manual.

K·OS ONE, 68000 OPERATING SYSTEM

*

*

•*

•

*

$395.00

*

. $50.00

*

*

*

*

*

*

8836 S. E. Stark

Portland, Or 97216

*

*

*

HAWTHORNE TECHNOLOGY

•

-Software Included:
• K-OS ONE. the 68000 Operating

System (source code included)
• Command Processor (w/source)
* Data and File Compatible with

HS-DOS
• A 68000 Assembler
* An HTPL Compiler
* A Line Editor

*

*

*

*

*

**

"*

tQ right and some the other way. With RPN languages things are
much simpler. If it is data it goes on the stack. If it is an action
word, the action happens.

In an RPN language the programmer has more control over
what kind of code is produced. The sequence of operations is
given by the source code. You don't have to worry about the
compiler rearranging the order to get better code. Even when
using an optimizing compiler you are assured that the operations
will be executed in the sequence given.

RPN languages are more flexible with the way arguments are
passed to subroutines. You can pass parameters by value and
parameters by reference in a single call.

The items on the stack become abstract items. They can be
used as values or addresses. They can be used as byte pointers,
word pointers, long pointers, pointers to structures, or pointers to

*

SINGLE BOARD COMPUTER
$395.00

32 bit Features I 8 bit Price

Order Now:
VISA, HC

(503) 254-2005

*

*

*

SHIPPED ON AN HS-DOS 5 1/4- DISK. .

bottom

top

**

ASSEHBLED AND TESTED ONLY

Add a terminal, disk drive
and power, and you will have
a powerful 68000 system.

-Hardware features:
• 8MHZ 68000 CPU
• 1770 Floppy Controller
• 2 Serial Pcrts (68681)
• General Pur90se Timer
• Centronics Printer Port
• 128K RAM (expandable to

512K on board.)
• Expansion Bus
• 5.75 x 8.0 Inches

Mounts to Side of Drive
• +5v 2A, +12 for RS-232
• Power Connector same as

disk drive

68000

c

stack
after

b
a

stack
before

a b -- c

Shows the stack change: '

EXAMPLE:

can be used to estimate how many levels of stack will be required
to run the program.

What is RPN, and Why Would You Want to Use It?
There are three different ways to mix operators and the

things they operate on: prefix, infix, and postfIX. These simply
mean that the operator comes before the operands, between the
operands, or after the operands. Most of the common
languages like BASIC, C or PASCAL are
infIX languages. LISP is the only common
prefix language. Postfix languages,
refered to as RPN (Reverse Polish
Notation), are represented by Forth,
PostScript, and HTPL. The Teco editor
used RPN. Adding machines all use RPN
and most printing desk calculators use
RPN. Each notation has its adherents. So
why use RPN?

The compiler for an RPN language is
smaller and simpler than the compiler for
an infIX algebraic language. A large por
tion of most compilers is a syntax analysis
routine that converts the source language
to an internal RPN format. If the source
is RPN this step is eliminated. When a
subscripted variable is referenced a lot of
code needs to be generated to calculate the
address to use. In RPN these calculations
are explicit rather than hidden. For ex
pressions, all an RPN compiler needs to
do is push any operand on the evaluation
stack and call or generate code for any
operator.

In an RPN language, user created
operators look the same as the built in
operators. When a subroutine package is
used to extend an infIX language the sub
routine calls are very different from the
built in operators. If the extensions look
the same as the built in operators they are
easier to use and the whole program has a
more natural look about it. It is easy to
create a special set of words for graphics,
statistics, mathematics or data base
programs. By the time a conventional
language has been extended very far it
starts to look more like LISP than
whatever it started out as. An RPN
language in contrast looks the same no
matter how far it is extended.

An RPN language is much simpler to
learn than an algebraic language. There
are no rules of associativity or precedence.
The operations are done in the order
specified. In the C language there are 14
levels of precedence. Some associate left

The Computer Journal/Issue *29 33

strings. Different numbers of parameters can be used by the
callp.d routine depending on what is found on the stack. A
procedure can return a varying number of results depending on
what happened. Conventionallanguages,don't offer this kind of
flexibility. The 68000 is a very good processor to use with an RPN
language. All eight of the address registers can be used as stack
pointers. In the other contending micros you have only a single
stack pointer and that is used for return addresses. The 68000 also
has a very effective set of opcodes that make for small efficient
programs.

HTPL has very low overhead on procedure calls. In HTPL
there is only a BSR or JSR to get to the procedure and an RTS to
get back from the procedure. Any arguments used by the
procedure are found on the evaluation stack. This means that
there is no need for an explicit transfer of arguments.

Many new languages like Post Script are using RPN because
as a subject gets more abstract the use of a stack to hold operands
becomes more convenient. The algebraic languages were derived
from math equations. When computing is less numeric in nature,
it is useful to have a stack for a short term memory to hold what is
being worked on.

There are not many books or articles on theory for RPN
languages. In many cases this is because writers write about things
that are easy to write about. If you look at any book on compilers
you find good coverage of syntax and very little coverage of code
generating. If you write a compiler you spend lots of time on the
code generating and relatively little on the syntax.

Why Not Forth?
Because Forth is the best known of the current RPN

languages many of it's quirks are assumed to be in all RPN
languages. While some of these disadvantages may be true with
Forth, they are not neccessarily true about all RPN languages.

RPN and threaded code are not the same thing. RPN is a way
for a programmer to describe the problem to the computer.
Threaded code is a technique for generating object code.
Threaded code has been popular for Forth on microprocessors
because it allows you to create a very fast interpreted instruction
set. For 32 bit machines like the 68000 there is no real need to use
threaded code.

Incremental compiling is also a technique that is often
associated with RPN languages. This was a technique used to
create an interactive environment without the slowness of a con
ventional interpreter. Many RPN languages are now compiled.

As you can see, RPN languages do not need to be feared.
The weak points of popular RPN languages have given this
method a bad name. One it does not rightly deserve. It may seem
like an unnatural method at first. This is due to early mathamatics
training. Anyone who has learned to use a 10 key adding machine
has learned to use RPN with postfix operators. Most adding
machine operators wouldn't recognize the terms, but after their
first couple of weeks training, they don't even think about the or
der they enter the information into the machine. Ask someone
you know who uses a 10 key by touch, what order they put the in
formation into the machine. If they don't have a machine they
can try it on to find out, they will have to think it through
keystroke by keystroke. The actions have become automatic. It
isn't so unnatural after all.

HTPL Programming Techniques When starting to use
any new language there are lots of little tricks and
techniques that you learn to make it easier and faster to
write programs. Some of these are very dependent of the

34

kinds of programs that are being written and some are of a
much more general nature. For many languages there are
collections of algorithms. These can be used to write a
good sort program or to manipulate a data structure.

HTPL is a stack oriented language. If a stack is not a
familiar thing, code can be produced by making a literal
tranlation of simple algebraic code. Frequently used code
sequences can be given a name and made into a procedure.
The use of many small procedures results in a slight speed
penalty but tends to make the object code generated a little
smaller.

Because a stack is so easy to use, there is a tendency to
try to do too many things on the stack and save too many
values there. You should avoid ever having more than four
values on the stack at any time. Saving a value in a tem
porary variable is not that hard. Having the wrong number
of items on the evaluation stack is probably the most
common error that occurs in RPN languages. The reset
command is used to reset the return and evaluation stacks.
Sometimes I use reset as a safty mechanism. When I'm not
sure if the stacks are OK I use it to force them into a known
good condition.

Strings and Characters
Many of the program modules that

are used in the K-OS ONE system deal with strings or character
manipulation. In the early days of computing, the processing of
numbers was most important. Now it is more important to be able •
to easily manipulate characters. The stack is used to pass single
characters or the address of a string. HTPL uses the C convention
where a string is a group of bytes that ends with a null or zero
byte. A string is referenced by pointing to the first charcter of it.
Also by convention, a valid pointer can never be equal to O. That
is refered to as a null pointer and it means that it doesn't point to
anything. Because all stack values are 32 bits long, a string can be
kept any place in memory.

The first two routines below deal with adding a character to
the end of a string that is being built. In both cases a pointer is
used to save the character then the pointer is incremented so it will
be ready for the next use. In some cases it is possible to have
characters and pointers on the stack. In most cases however it will
be easier if either the character or the pointer is in memory. A
short assembly routine can be added to the run time library to do
many of these things if they are used a lot.

In the first case, the destination pointer is on the stack. The
item is placed on the stack. Then the over is used to make a copy
of the address to store the character. The !l uses the character and
the copy of the pointer. The + 1 then increments the pointer for
next time.

In the second case, the destination pointer is in a variable and
the character is on the stack. First we get the pointer on the stack.
We then duplicate the pointer so that we will have a copy of the

. pointer as it is. We increment the top copy and store it back in the
variable that holds the pointer. The other copy of the pointer that
wasn't incremented is used by! 1 to store the character.

Add a character to a string:

1. if the destination pointer is on the stack:

@item over !1 +1

The Computer Journal/Issue 129

Z. if the item is on the stack:

@pntr dup +1 Ipnter 11

Get the next character using a pointer and return it:
@pntr dup +1 lpntr @1

Change lowercase letters to uppercase letters:
if dup 'a' 'z' range then 32 - end

Looking for first space, (pointer is on stack):
while dup @1 ' '. <> do +1 end

•

I would also like to see more articles cn
interfacing speech chips (SP0256) and
sound chips (AY-3-S21O/S212) to various
buses, using IBM keyboards and monitors
with non-IBM equipment... (Which
reminds me, pin outs and signal descrip
tions for the IBM keyboard, monitors,
and other peripherals would be extremely
useful to us non- IBM types to support in
terfacing attempts.)

L.S .

Reader's Feedback

(Continued from page 4)

take a 64 pin header and replace the lSO
with a HD64ISOl. if the HD64ISOl will
run at 4 MHz. I think my 64K chips will
baulk at 6 MHz.

If this works I plan to remove the 64K
chips later and replace them with 256K
chips and bring the system up to 6 MHz
along with new ROMS.

At this point I am a systems program
mer. Also am learning to type and will try
to learn assembly language programming.
There is a lot to crowd into my later life. I
am 72 now.

What do you think of the idea?
Any help you can give me will be greatly

appreciated.

Hiram Desantis
IS96 Keewin Ave. N.E.
Palm Bay. FL 32905

How about some of you hardware
gurus giving Hiram a hand on this project.

Disk Formats
The big issue around here is disk for

mats. Number one is getting other
people's files' moved to the Macintosh
network, from IBM, CP/M, HP 3~ w,

Tandy 100 3V2", etc. Number two is
keeping all the files on the CP/M systems
accessible when S" SSSD seems to be ob
solete and the CCS 2422 (at least mine)
won't read/write the Ampro or Kaypro
formats everyone seems to be using for
disk exchange.

If Ampro format is the new CP/M
"standard," how about publishing all the
details & hints on how to read it? Or a
series of programs to force the common
controller chips to read it (1793, 765A,
etc) and only require the proper I/O ports
to be patched in?

The Computer Journal/Issue *29

Maybe my problem is trying to use my
Teac 55G (dBM-AT style S" compatible)
drives in their 5" 300 rpm mode, instead
of regular 40 track drives... Has anyone
made this work?

L.A.

Jay Sage Fan
The past year has been terrific! Jay Sage

is a real boost. His insight and the
brilliance of his work is monumental.
Also, his understanding of those of us
with small TPAs (Osb I, hard drive) is an
uplift.

I have used his new "SUB" to make
programs leave lCPR33, run in full TPA,
and then return to lCPR33, fantastic!

Keep Clark Calkins writing about
debugging and Thomas Hilton's
educational articles.

Thanks for a terrific year.

A.W.

Z80 User
I have two systems - both lSO based
My "main" system is a TRS-SO Model

II with 256K memory, two S" 1 Mbyte
floppies, and a high resolution graphics
board. I run OASIS, a multi-user OS on
this computer. My other system is a
Televido 806 with two 5 \4" floppies, run·
ning CP/M 2.2x.

I would like to see articles on inter
facing hard disks to SCSI con·
trollers - compatibilitiy of various SCSI
based controllers with various hard disks,
command sets for the controllers, exam·
pie drivers, comparisions of different con
troller/disk combinations for speed and
ease of use, etc.

Miscellaneous Reader Comments
How about a wire wrap video board for

the IBM PC Bus? Possibly using one of
the new graphics controller IC chips.
Suggest you drop CP1M & lSO.

Would like to see more hardware and
software articles for MS DOS, especially
AT systems.

I am renewing because you have more
articles on MS DOS. I am interested in
understanding MS DOS so I can write
programs such as device drivers or other
enhancements to MS DOS.

Like C.D.M. (Reader Feedback, Issue
#27), I was afraid that you might be
following in the footsteps of Com
munications and Electronics, which I once
thoroughly enjoyed because of its blend
of hardware and software material
(generally not too complex for my
capabilities).

I. was about to drop my subscription but
decided to wait for issue #27 before I
made my decision. Happily (as owner of
an SB·lSO) Jay Sage's column appeared
for a third consecutive issue with promises
of continuing regularly. This alone was
enough to make me reconsider. Also Jon
Schneider's article on the HD641S0 put
the icing on the cake.

Please don't forget us hardware hob
byists (expert though we may not be).

I am still interested in CP1M stuff (Nor
th Star). I recently acquired a Sage II and
would be interested in an article on how to
install K-OS ONE on it.

My systems are Ampro lSO Little
Board (IA), STD Homebrew, expanded
Little Board on STD Bus.

Just in - Hawthorne Little Giant. It's
gonna need hack ports of: VDO,
Disk7/Sweep, NULU, Small C, Super
zap, Fbad, MDM74O, Unera, Vfiler,
DDT/SlO, Config, Multidsk.

I'm designing/programming boards for

(Continued on page 41)

35

Detecting the 8087 Math Chip
Temperature Sensitive Software

by E. Clay Buchanan III

The logic of this code seems perfect. Order the 8087 to store
its status word in memory. If the store instruction changes
memory then an 8087 must be present. There is only one problem.
This little piece of code failed on one of the three "True Blue"
IBM ATs I tried it on. It worked on every PC and XT I tried. For
reasons known only to hardware designers one of the ATs I ran
this on changed memory from Offh to Oddh even though no 8087
was present. As a result the above code would improperly detect
an 8087 and thousands of floating point operations would go
zooming off to a nonexistent chip. From there its just a matter of
time before an FWAIT instruction or some other combination of
floating point instructions hang the AT or result in a wild jump
into interrupt vectors. Clearly I was looking at a "feature" of the
AT motherboard design.

I must emphasize Mr. Sargent and Mr. Shoemaker are quite
knowledgeable on the AT motherboard. Page 230 of their book
has a section titled "IBM PC AT System Board" with a

There I was happily hacking in 8086 assembly language when
a customer phoned to describe a problem he was having with one
of my company's older graphics products. The symptoms he
described were unbelievable. The same program which ran fine on
an XT or PC would fail on about one third of all the ATs at the
customer site. The customer had gotten the program to work on
one or two of the failing ATs by changing their motherboards
although one AT required three different boards before one
worked. In addition one AT would fail if recently powered up but
once it had been running for 30 minutes or so it worked! So the
customer asked me "What's the problem?"

My answer was simple "Sorry, I can't answer your problem
right now, I have to jump out a window first." Fortunately I was
saved at the ledge by a wise sage who told me that symptoms like
these in graphics or math software are almost always the result of
the program improperly sensing the presence or absence of the
8087 or 80287 math coprocessor.' Since my DOS technical
reference manual doesn't state how to detect the presence of an
8087 and the AT technical reference doesn't seem to mention it
either I looked at a very good book called "The IBM PC from the
Inside Out," by Murray Sargent III and Richard L. Shoemaker,
copyright 1986, ISBN 0-201-06918-0, Published by Addison
Wesley. This book has a great deal of hardware information in it
which includes the 8087 math coprocessor. On the cover is a sub
title "Includes the PC AT" and with its wealth of logic diagrams
and TTL circuit descriptions it seems the authors must have an ex
tensive background in hardware design. On page 167 is a simple
program to detect the presence of an 8087:

I sts67 dw Offh

Chk67: Inlnlt
1k)'V cx,64h

chk672: loop chk672
Instsw Ists67
ret

:Try to initialize the 6067 or 60267
:Walt long enough to let It IInlsh
:(Ifs It's there)
;Store status word

schematic. Whole sections of the book are devoted to the use of
the 8087. All in all it's a first rate book. But somehow these exper
ts were a little off in detecting the math coprocessor. Everything
was pointing to this as the problem so I began looking through
our product's code to find where we detected the presence or ab
sence of the 8087.

The product was written almost entirely in 8086 assembly
language but some floating point code was written in Lattice C. I
don't know the exact version of Lattice used but it must have
been before version 2.14. Lattice was then advenising that its run
time libraries automatically detected the 8087 and would use the
chip if present or emulate it if absent. Stepping through the code
with debug I quickly came across the sensing code. It was as
follows:

IlOv word ptr [01341, Offffh
fstsw (01341
ClIp word ptr 101341, Olllfh

Almost identical to the code in Sargent's and Shoemaker's
book and consequently subject to failing on one third of the ATs
I tried it on. When I relinked the product with version 2.14 of the
Lattice compiler the program worked on all the ATs I tried it on.
Stepping through the code showed the sensing routine had been
slightly changed to:

IlOV word ptr (0140J, Offffh
fstsw [0140J
test word ptr [01401, Ob6bfh

Changing memory is no longer enough to indicate an 8087. A
more complex data pattern is now required. Obviously the Lattice
engineers had detected or heard of the bug and changed their code
for version 2.14. When I ran the.above code on one AT the Offffh
value changed to 3eddh but the test for Ob8bfh worked and the
routine correctly identified the absence of an 80287 chip.

Just to see if anyone else had noticed this problem I went
through my back copies of Dr. Dobb's Journal and found a
reference to the 8087 and 80287 in the September 1985 issue. The
16-BIT Software Toolbox section of that issue gave the code to
detect a math coprocessor. It was almost the same as the Lattice C
routine except it used a fnstcw instruction and then checked for a
value of 03h as the high byte of the stored word Le. variable + 1 in
memory. The article warned about a difference between the 8087
and 80287. Apparently the 8087 stores a value of 03ffh if present
and the 80287 stores a different value in the low byte. To be safe
the article recommends checking for the 3. The article says this is
the "accepted strategy" for detecting a coprocessor.

Where is IBM in all this? Isn't there an IBM approved way to
detect the presence or absence of a math coprocessor? Yes, there
is. But don't expect to find it where everyone will look. I expected
to find a line in the AT technical reference manual that read
something like "coprocessor, detection of." But nooOOOoo.
That would be too easy. Ditto for the DOS technical reference

38 The Computer Journal/lssue'29

manual. I finally obtained a technical note from IBM on how to
do it:

IBM's solution is clear, use BIOS interrupt lIh to detect the
8087. The note goes on to say "This procedure applies to the PC,
XT, and Portable, as well as the AT. On the PC, XT, and Por
table the user must have set the switch on the planar board
properly per published instructions. On the AT the Power On
Systems Test (POST) code takes care of this initialization."
Finally the note says "Other techniques to check for the presence
of a math co-processor may yield unreliable results and,
therefore, are not supported by IBM." No kidding.

I'm sure Lattice knew about int lIh when they coded their
run time floating point library. Why didn't they use it? Obviously
I can't be certain but I can guess since I write compiler run time
libraries for a living. A constant goal of any library is to be por
table. Write the routine once, debug it once, and then forget
about it. Making BIOS calls in your library introduces a depen
dency. Your library now assumes an IBM compatible BIOS to
work correctly. What if you're porting to a clone that doesn't

lip I\Qt In:

Int 11h
lind lIx.2
JZ IIp_not_1 n
nop

; Julip I f no ..th coprocessor
!HlIS coprocessor

have an int lIh? A BIOS interrupt takes more time than a status
word store and besides, a store and compare seems so simple and
self contained. Who would have thought IBM would design a
computer that responds to instructions to nonexistent chips? XTs
and PCs don't. Most ATs don't and although I wasn't able to
verify it the customer was certain some ATs were temperature
sensitive. So the choice is up to you. Personally I'm a big ad
vocate of nonjudgemental design. Use or don't use the BIOS in
terrupt depending on your needs. Just be aware that IBM accepts
no substitutes for int Ilh.

If you come across software with these symptoms don't just
set a breakpoint at the int lIh routine and assume that because
some of your software is doing BIOS calls to check for the 8087
all of the software uses int 11 h. In our product two different C
compilers were used and one used int lIh while the other used
status word stores.

In the end I replaced our product's status word store instruc
tions with int Ilh. I decided to adhere to the IBM standard. This
time at least. I take comfort in hearing that even Intel has trouble
with the interface between the 80386 cpu and the 80387 floating
point chip. It seems Intel is coming out with a new step of the
80386 to fix "minor" glitches in the math coprocessor interface.
Keep your debugger handy and your computer cool. You never
know when a floating point bug is creeping around. •

I VVanted I
===

• Clocks - We need articles discussing the pros and cons of various time keeping
methods. I have choosen to use the KCT Ztime-I because I feel It Is best for my apllcatlons,
and I have an article in preparation.

Submit your clock related programs and Ideas - many different approaches are bet
ter than just one.

• 68000 - TCJ is planning extensive coverage of the 68000 series and we need articles on
assembly language programming, interfacing to peripheral chips (parallel and series I/O,
disk controller, graphics, etc.), and general articles on the 68000.

• CUG Disk Reviews - The C User's Group library contains many useful disks. I am
reviewing several disks, but need help because there are more than I can handle alone.

Contact TCJ If you would like to review CUG disks.

TCJ Is User Supported

If You Don't Contribute Anything...•

.••.Then Don't Expect Anything

The Computer Journal/Issue ##29 37

Floppy Disk rrack Structure
A Look at Disk Control Information & Data Capacity

by Dr. Edwin Thall, Wayne General & Technical College

The floppy diskette, a popular mass-storage medium, con
tains more than just the user's data. The MS/PC-DOS 360K for
mat delegates approximately one-fourth of usable diskette space
for purposes other than data. Diskette control information is
required to locate, separate, and check validity of data. In this ar
ticle, I analyze the diskette track structure generated by the har
dware of IBM PCs and compatibles. I will demonstrate how con
trol information can be displayed and describe how it influences
data capacity.

Track Strusture
The track organization of the 360K format is illustrated in

Figure 1. Each side of the 5!14 inch double density diskette
possesses 40 concentric tracks extending from track 0 on the
periphery to track 39 near the hub. Although more space is
available for storage on Outer tracks, the hardware requires a con
stant number of bytes for all tracks. This number, approximately
6,200, is determined by the size of the inner tracks.

to the end of the track with 4EH. Sectors, the fundamental unit
of diskette information, represent the smallest part of a track that
can be read or written.

What's In A Sector?
The exact structure of a newly formatted sector is provided in

Figure 2. Besides data, sectors contain 62 bytes of control infor
mation. Every sector has two major components: the iden
tification (10) field and the data field. As the name suggests, the
data field storehouses user data and is the most important part of
a sector. The ID field holds the information needed to locate sec
tors. Let's examine sector components in detail.

Sector 10 F lei d: 12 bytes 00 (sync field)
4 bytes A1A1A1FEH (10 address mark)
4 bytes CHRN (sector 10)
2 bytes CRCl (error cneckl

F lei d Separator: 22 bytes 4EH

Sector Data Field: 12 bytes 00 (sync field)
4 bytes A1A1A1FBH (data address mark)

512 bytes F6H (data)
2 bytes CRC2 (error check)

Sector Gap: 80 bytes 4EH

Figure 2. Structure of new I y for_ttad sector

The 10 field begins with a sync field followed by the 10 ad
dress mark. Sync fields, 12 bytes of 00, forewarn the coming of
address marks. You are probably aware that information is
recorded in serial bit stream (l and 0) on the coated surface of a
diskette. When writing data, a change or "transition" is represen
ted by "I" and lack of transition by "0." Double density disket
tes, based on the MFM (modified frequency modulation) en
coding scheme, store data in bit cells large enough to hold two
transitions. The extra transition, known as a "clock," marks the
start of a cell. A large string of zero bits (lack of transition) can
prevent the detector from locating the beginning of a cell. Clock
transitions, stored between consecutive zero data bits, identify the
start of a cell.

o I o 0 0 1 o 0 1 0 ! 0 1 0 0 1

...... L TrKk _ (3601: f_)

The format procedure creates the track structure needed to
store and locate data. A 146 byte track preliminary begins im
mediately after the index hole and consists of:

80 bytes 4EH
12 bytes 00 (sync field)

4 bytes C2C2C2FCH (address mark)
50 bytes 4EH

Nine equally spaced sectors follow and unused area is filled

38

Figure 3. 14'/14 encoding sch_ for A1H <1010 0001l

To demonstrate how clock transitions are distributed, con
sider the bits in AIH (1010 0001) as they are stored in eight con
secutive cells (see Figure 3). The first bit in every celI specifies the
clock and the second bit data. Note the clock transitions (arrows)

Dr. Edwin Thall, Professor of Chemistry at The Wayne
General and Technical College of The University of Akron,
teaches chemistry and computerprogramming.

The Computer Journal/lssue'29

between consecutive zero data bits. Address marks are not given
clock transitions and vary physically from other data bits. The
four-byte field AIAIAIFEH would normally possess nine clock
transitions, but contains none when written as the ID address
mark. This unique pattern enables the computer to distinguish
address marks from everything else.'

The CHRN follows the ID address mark and is the most im
portant component of the ID field. Formatted sectors are iden
tified for future read/write operations by this four-byte field. The
four CHRN parameters specify:

Viewing Control Information
Now that you are familiar with the structure of tracks and

sectors, I will show you how to display diskette control infor
mation. The method, which I call sector overlap, allows you to
look at the preliminary, sector components, and gaps. You will
need the DOS DEBUG utility and a scratch diskette.

G(X) - X"16 + X"12 + X"5 + 1

I IX"16)+QIX··15)+Q(X··14)+Q(X··'3)+1 (X"12l+Q(X··l1)+ •••

The equation may be restated with 17 binary coefficients
(under II ned) as:

The fifth sector on track 07, head 00, and holding 512 bytes of
data is identified by 07000502.

Cyclic redundancy checks (CRC) test the correct reading of a
sector's identification (CHRN) and data block. The technique
depends on an algorithm to verify the accuracy of data written to
a sector. IBM and compatibles rely on the CRC-CCITT error
detection code. This technique is based on the polynomial:

-E 111
05:0111 17.00 01.10

To reed sector 5 Into the buffer eree beginning et offset
IDOOH. enter the fo II ow Ing .00 I f Icet Iens to the for...t
progr... :

-E 105
OS:0105 05.02

A>OEeUG
-AIOO (enter progr... l
-G

-E 107
05:0107 09.01

-fl08
05:0108 01.05

A formatted track is defined by four track (see Table I) plus
four sector (CHRN) parameters. The track parameters are stored
in the diskette parameter table (address 0:522-Q:52CH) during the
computer start-up. When a track is formatted, the "track" N
determines the number of bytes written to each sector. However,
once the format is complete, the "sector" N takes over and
regulates the number of bytes read or written. If the "sector" N
exceeds the "track" N, diskette control information can be
read. Our strategy is to format a track with nine standard
sectors (N =2), but assign a CHRN to the fifth sector correspon
ding to 4096 bytes (N =5). Figure 4 lists the assembly language
program to carry out such a format to track OI/side 00. Load the
DEBUG utility and place your scratch diskette in drive A. Enter
the program (omit comments) by means of the assemble com
mand (AIOOH) and then execute.

(OO-27H)
(OO-slde 0, 01-slde I)
(01,02,03, •••)
(12e·2··N, N-O,I,2,3,4,5)

C Track number
H Head number
R sector number
N Sector length

The coefficients of the polynomial are represented by a 17 digit
binary number (I 0001 0000 0010 0001). The CRC method takes
an entire block of data and divides it by this 17 bit number. The
complement of the remainder, a two-byte value, is stored as the
CRe.

Every sector is given two cyclic redundancy checks. The first
check (CRCI) is determined from the four-byte CHRN. When
accessing sectors, CRCI verifies that the correct sector was
located. The sector ID field ends with the two-byte error check.

The ID and data fields are separated by a 22 byte gap. A sync
field followed by address mark (AIAIAIFBH) initiate the data
field and signal the approach of data. The size of the data is based
on the algorithm:

Figure 4. AsS8llbly lengue98 progr... to for-..t treck with
oyer I epp I ng sectors

-E 0:525
0000:0525 02.05
-G

The program to read Sector 5 appears in Figure 5. Before you at
tempt to read Sector 5, you must change the data length
parameter (address 0000:OS2SH) from N =2 to N =5.

dete length - 12e1N~1

The sector length parameter (N) may take on values of 0-5 (128,
256, 512, 1024, 2048, or 4096 bytes). However, values of N
greater than 5 lead to chaos. For example, N = 6 (8192 bytes)
requires a format that goes beyond one revolution of the disk.
When a second pass to format the track is made, the ID field is
overwritten and the sector is destroyed.

The data field ends with the second cyclic redundancy check
(CRC2). For this error check, the entire data block is divided by
the 17 bit polynomial, and the complement of the remainder
stored as CRC2. Whenever data is read from a sector, the CRC is
calculated and compared to the CRC2. An error message results if
the two values disagree.

Sectors are separated by gaps. The standard size is 80 bytes
but gaps as small as two bytes may be used. A trade-off exists
between disk capacity and gap size. If the size of a gap is reduced,
the number of sectors can usually be increased. But remember,
smaller gaps increase the possibility of overwriting the next sec
tor's ID field. This is most likely to be a problem when sectors are
formatted on one machine and then written to by another.

05:0100 MOY
05:0102 INT
05:0104 MOV
05:0106 MOY
05:0108 MOY
05:0101\ MOY
05:01OC MOY
05:01OE MOV
05:0110 MOY
05:0113 INT
05:0115 INT
05:0117 08
05:011B DB
05:011F DB
05:0123 DB
05:0127 DB
05:0128 DB
05:012F DB
05:0133 DB
05:0137 DB

Ali, 00
13
Ali, 05
AL,09
CH,OI
CL,OI
OIl,00
Dl..,OO
ax,Oll7
13
20
01 00 01 02
01 00 02 02
01 00 03 02
01 00 04 02
01 00 05 05
01 00 06 02
01 00 07 02
01 00 08 02
01 00 09 02

;RESET 0 ISK CONTRCLLER
;BI05 DISK 110
;FOfI4AT TRACK
;9 SECT~S

;STMTlNG AT TRACK 01
• SE~ 01

HEAD 00
; ~IYE "
;POINT TO ~N
;BI05 DISK 110
;RETUUl TO DOS
;~ ENTRIE5

;LARGE SECT~ N

The Computer Journal/Issue 1129 39

-0 1000 (displays offsets l000-107FH)

f, !/Ur~~. Assembly language program to read Sector 5

The read operation stores 4096 bytes into the buffer area at of
fsets 1000-1 FFFH. You can display these locations with the dump
command:

L~.OIOC 140V AIi,OO
D~ Cl.~~ INT 13
D~;Olv. I40V AIi,02
D~ ,,! C)< I40V AL,05
U~;OI()1l I40V CH,OI
D~.C1QA I40V CL,OI
()~ ;01 ex: I40Y OH,OO
li~.CIJl I40V OL,OO
O~:U"0 I40Y BX,looo
D~:O") INT 13
D~:Cll~ INT 20

;RESET 01 SK CONTROLLER
;BIOS DISK I/O
;READ TRACK
; 1 SECTOR
;STARTI~ AT TRACK 01

• SECTOR 05
HEAD 00

; DRIVE A
;PO INT TO BUFFER AREA
;BIOS DISK I/O
;RETURN TO OOS

different track or diskette.
A track is considered unformatted when the preliminary is

overwritten. If you should write 4096 bytes to Sector 5, the
preliminary and Sectors I, 6, 7, 8, and 9 are destroyed. However,
you will still be able to read/write Sectors 2,3, and 4.

Data Capacity
I conclude this article by'examining the effect diskette con

trol information has on data capacity. How many bytes of data
can the diskette accommodate? Which of the six allowed sector
sizes leads to the maximum storage of data? Before reporting the
results of my investigation, I'll show you how to predict data
capacity.

I calculate the total track capacity, including diskette control
information, at 6253 bytes. Here is the breakdown for the 360K
format:

Starting with the data in Sector 5 (512 bytes of F6H), you can
view 4096 consecutive diskette storage locations. Table 2 offers a
summary of these locations (offsets 1000-IFFFH).

146 bytes
4608

558
640
301

track Preliminary
data (9-5121
sector control Infor~tlon (g-62 I
gap between sectors (8-801
to end of track

C2C2C2FCH· 0 1100 0010 1100 0010 1100 0010 1111 1100

4E4E4E4EH· 0100 1110 0100 1110 0100 1110 01001110

TaCle 2. Su_ry of 4096 consecutlYe diskette locations

The preliminary address ~rk Is also read one bit early and
appears as 6161617EH Instead of C2C2C2FCH.

track Prellllinary
data (10-5121
sector control Infor....tlon (10-62)
gap between sectors 19-80)

6606 bytes

146 bytes
5120

620
720

Any attempt to format a track with more than ten sectors of this
size, regardless of gap size, is doomed to fail. The eleventh sector
will overwrite the preliminary and the first sector of the track.

To facilitate my investigation of data capacity, I relied on the
Disk Explorer. This handy utility, distributed by Quaid Software
Limited, makes it easy to format a track. From the "edit format"
screen, you need only define the four track plus four sector

(disk sl des I (tracks/side) (sectors/trackl (s Izel

capacity. --
1024

The percent utilization of diskette space comes in at 73.70/0
(4608/6253) for the 360K format. Let's determine the maximum
number of sectors (512 byte size) possible for a single track. For
ten sectors, the number of bytes required are:

To accommodate the ten sectors, 353 bytes must be eliminated
from the track. The preliminary (146 bytes) and the sector control
information (620 bytes) cannot be altered. If the track limit is to
stay within 6253 b)1eS, the gap between sectors must not exceed
40 bytes. For ten sectors per track, the diskette capacity is com
puted as:

(21 (401 (101 <5121
• ------------------- • 400K

1024

27H27H27H

Description

512 bytes F6H 1sector 5)
CRC2
sector gap
10 sync field (sector 6 begins)
10 addressrk
CIflN
CRCI
f Ie I d separator
data sync field
dat" address qrk
512 bytes F6H
CRC2 (sector 6 ends)
sectors 7-9
4EH to end of track
track prellml nary
sector 1

Offset

1000-1 FFFH
1200-1201
1202-1251
1252-1250
125C-1261
1262-1265
1266-1267
1268-1270
127E-1289
128A-1280
128E-1480
148E-148F
149O-IC.39
I C.3A-I 065
1D66-10F8
10F9-IFFF

Sector 5 required a "long" read that goes beyond the end of
the track. The preliminary is read during a second pass of the
track, and there is a one in eight chance of reading these bits in the
proper synchronization. I had to make several runs before syn
chronization was correct. Figure 6 shows the results of an unsuc
cessful attempt preliminary. In this figure, the preliminary is read
one bit too early and the initial 80 bytes (offsets 1D66-IDB6H)
appear as 27H. Reading a series of hexadecimal 4E (0100 1110)
one bit out of synchronization gives:

61H 61H 61H 7EH

Figure 6. Track preliminary (one bit out of sync)

Edit Format C H R N SC f leg
1 0 I 2

drlve:treck.head a:O.O 1 0 2 2
I 0 3 2

N SC GPL o kind I 0 4 2
2 10 2 246 1 0 5 2

I 0 6 2
1 0 7 2

key purpose 1 0 8 2
select f laid I 0 9 2

PgUp edit ~nd I 0 10 2
PgOn edit Id's

Esc return
+ - chenge f lei d

F5 for~t track
enter read sector

A7 27-27 27 27 27 27 27 27 27
27 27 27 27 27 27 27 27-27 27 27 27 27 27 27 27
27 27 27 27 27 27 27 27-27 27 27 27 27 27 27 27
27 27 27 27 27 27 27 27-27 27 27 27 27 27 27 27
27 27 27 27 27 27 27 27-27 27 27 27 27 27 27 27
27 27 27 27 27 27 27 00-00 00 00 00 00 00 00 00
00 00 00 50 DO 00 FF 00-80 00 81 5E 60 A7 27 27
27 27 27 27 27 27 27 27-27 27 27 27 27 27 27 27
27 27 27 27 27 27 27 27-27 27 27 27 27 27 27 27
27 27 27 27 27 27 27

-0 I066,10F6
OS: 1060
OS: 1070
OS: 1080
OS:109O
OS: lOAD
OS: lOBO
OS:IDCO
OS: 1000
OS: IDEO
OS: lDFO

Run the format program again to help remedy synchronization
prOblems. If you are unsuccessful after a few attempts, format a

Figure 7. The Disk Explorer (edit for~t screenl

40 The Computer Journal tIssue 1129

Sector si ze Sectors/Tr.ck Diskette Cop.city
----------- ------------- -----------------

128 ~ytes 32 32DK
256 19 38CK
512 10 40DK

1024 5 4001<
2048 2 32DK
4096 1 3201<

Tobie 3. Oat. cap.cltles for tne six sector sizes

parameters. To maximize the number of sectors per track, I set
the sector gap length at two bytes. Figure 7 illustrates the screen
that I selected to format ten sectors to track Ol/side 00. The flags
(none showing) signal when sectors are formatted unsuccessfully.

A summary of my results may be seen in Table 3. The Disk
Explorer permits a maximum of 24 sectors per track and the first
format (32 sectors) was generated with a program similar to the
one in Figure 4. The other five formats were produced with the
Disk Explorer. For the six formats listed, I verified that all sectors
could be read. •

Byte Magazine called it.

"CIARCIA'S
SUPE.R
SYSTE.M"

Featured on me cover of Byre. Sept 7985.
me SB 180 lets CPIM users upgrade 10 a
fast. 4" x 7'1,· single board system

TURBO MODULA-2.... ,$69.00
TURBO MODULA-2 with

Graphix Toolbox ,$S9.00

The SB180
Single Board Computer

For Technical Information or '" CT. call:
1-203-871-6170

fr"~~ Mlc",m;nl. Inc.
/ ~ 4 Park Street

•. { Vernon, CT 06066

TELEX
643331

TO ORDER
CALL TOLL FREE

1·800·635-3355

• 6MHz 64180 CPU
(l80 ,"struclion superset), 256K RAM.
8K MOMor ROM Wllh deVice lest. dISk
format. read/wllte.

• Mini/Micro Floppy Controller
('·4 dllves, Single/Double DenSity,
1·2 Sided, 40/77/80 track 3'/2~ 5'/.
and 8" dllves).

• Measures 4" x 7'/2: with mounting holes
• One Centronics Printer Port
• Two R5232C Serial Ports

(75·19,200 baud WIth console port
auto-baud rate select).

• ZCPR3 (CP/M 2.213 compatible)
• Multiple disk formats supported
• Menu-based system customization

New LoW Prices
;,;::;;---

5B1S001
SB180 computer board w/256K
bytes RAM and ROM monitor
... , .. , •....•........ ,$299.00

5B180-1-20
same as abOve w/lCPR3, lRDOS
and BIOS source, $399.00

COMM180-5
SCSI interface $150.00

Now Available

---====

Editor's Note: Send your comments on .
the above plus information on what
you're doing and what you would like to
see. Contact TCl if these give you an idea
for an article that you'd like to write.

plan on using some type of
microprocessor to control and operate a
model railroad. I!O devices are of interest
tome.

I use a Corona (CORDATA) MS DOS
"clone". I'm interested in coprocessor
boards (Z80, Hitachi HD64180, or
Motorola 68XXX) for MS DOS com
puters, and help in finding any OEM's
that sell completely assembled systems
using the Hitachi CPU - I am definitley
not a "Hacker" - but am very in
terested in the "8-bit revolution."

I would like articles on: (1)
Design/Construction articles: a) 68000
based machines and interfaces to
peripherals such as floppy drives, hard
disks, etc. b) use of computers in on-line,
real time data acquisition, process con
trol, etc. c) image processing. (2) Software
articles: a) cross-assembler for 6502,
68000. b) image processing, file com
pression schemes, etc. c) AI programs that
work! (Le., neural nets), etc.

I like the articles on Operating Systems
and programming in C, Forth, and
Pascal. The feedback loop control article
was good.

I use a SBl80 with COMM ISO, ZC
PRJ, and the TERM-MITE STlooo ter
minal controller. I'd like more articles like
The Art of Source Code Generation and
Disk Parameters. •

Ra.dar's Faadb.ck

(Continued from page 35)

STD & MIDI, and am targeting 'elec
tronic musician', etc, for MIDI!Audio
stuff.

What I like (at this time in my work and
while in school): (1) Review the languages
(Le. C, Pascal, True Basic, Fortran,
assembly) for the PC & RSI. (2) A/D
D/A - hardware, software, plotting on
dot and plotter machines for the Pc. (3)
How about ADIDA for something like C
64? This can free up my IBM when I'm
doing 24 hour monitoring and 8-bit is OK.
(4) Videolaudio manipulation via
digitization.

At home I use: (1) Xerox 820-1 with two
51;4" DSQD and 2 8" SSSD, currently up
dating to 1M RAM and QP/M OS. (2)
Apple 1[+ with 6MHz Z80 card. (3) Will
also soon start playing with a surplus
Morrow MD-2 board recently acquired.

At work I do machine control ap
plications in Forth on STD bus Z80s, and
also use a MicroMint SB-lSO.

I am interested in Forth, real-time
machine control applications; beyond·
beginner treatment of algorithms, har
dware, and topics related to above listed
interests; newer, non-PC, inexpensive
processing and control engines - like
the SB-180 and Hawthorne Technolog's
Tiny Giant/K-OS

I would like to see articles on hard disk
drives and their controllers. How to
trouble shoot them, set them up, how to
program the controllers, what is standard
and what is not for CP1M, MS DOS,
Kaypro, IBM, SCSI, SASI.

I use a IBM XT at work, and have an
Osborne 1 at home. This coming winter I

The Computer Journal/Issue *29 41

11- B_'a_c_k_ls_su_e_s_A_v_a_i_la_b_le_: 1
Issue Number 1:
• RS-232 Interface Part One
• Telecomputing with the Apple II
• Beginner's Column: Getting Started
• Build an "Epram"
I,IIue Number 2:
• File Transfer Programs for CP/M
• RS-232 Interface Part Two
• Build Hardware Print Spooler: Part 1
• Review of Floppy Disk Formats
• sending Morse Code with an Apple II
• Beginner's Column: Basic Concepts
and Formulas
lISle Number 3:
• Add an 8087 Math Chip to Your Dual
Processor Board
• Build an AID Converter for the Apple
II
• Modems for Micros
• The CP/M Operating System
• Build Hardware Print Spooler: Part 2
Issue Number 4:
• Optronics, Part 1: Detecting,
Generating, and Using Light in Elec
tronics
• Multi-User: An Introduction
• Making the CP/M User Function More
Useful
• Build Hardware Print Spooler: Part 3
• Beginner's Column: Power Supply
Design

Illue Number 8:
• Build VIC-20 EPROM Programmer
• Multi-User: CP/Net
• Build High Resolution 8-100 Graphics
Board: Part 3
• System Integration, Part 3: CP/M 3.0
• Linear Optimization with Micros

Issue Number 14:
• Hardware TriCks
• Controlling the Hayes Micromodem II
from Assembly Language, Part 1
• 8-100 8 to 16 Bit RAM Conversion
• Time-Frequency Domain Analysis
• BASE: Part Two
• Interfacing Tips and Troubles: Inter
facing the Sinclair Computers, Part 2
Issue Number 15:
• Interfacing the 6522 to the Apple II
• Interfacing Tips Ie Troubles: Building
a Poor-Man's Logic Analyzer
• Controlling the Hayes Micromodem II
From Assembly Language, Part 2
• The State of the Industry
• Lowering Power Consumption in 8"
Floppy Disk Drives
• BASE: Part Three
Issue Number 16:
• Debugging 8087 Code
• Using the Apple Game Port
• BASE: Part Four
• Using the 8-100 Bus and the 68008 CPU
• Interfacing Tips Ie Troubles: Build a
"Jellybean" Logic-to-RS232 Converter

42

Issue Number 17:
• Poor Man's Distributed Processing
• BASE: Part Five
• FAX-M: Facsimile Pictures on a
Micro
• The Computer Corner
Interfacing Tips Ie Troubles: Memory
Mapped I/O on the ZX81

Issue Number 18:
• Parallel Interface for Apple II Game
Port
• The Hacker's MAC: A Letter from Lee
Felsenstein
• 8-100 Graphics Screen Dump
• The LS-100 Disk Simulator Kit
• BASE: Part Six
• Interfacing Tips Ie Troubles: Com
municating with Telephone Tone Con
trol,Part 1
• The Computer Corner
Issue Number 19:
• Using The Extensibility of Forth
• Extended CBIOS
• A$500 Superbrain Computer
• BASE: Part Seven
• Interfacing Tips Ie Troubles: Com
municating with Telephone Tone Con
trol,Part2
• Multitasking and Windows with CP/M:
A Review of MTBASIC
• The Computer Corner
Issue Number 20:
• Designing an 8035 SBC
• Using Apple Graphics from CP/M:
Turbo Pascal Controls Apple Graphics
• Soldering and Other Strange Tales
• Build a 8-100 Floppy Disk Controller:
WD'Z1'11 Controller for CP/M 68K
• The Computer Corner
Issue Number 21:
• Extending Turbo Pascal: Customize
with Procedures and Functions
• Unsoldering: The Arcane Art
• Analog Data Acquisition and Control:
Connecting Your Computer to the Real
World
• Programming the 8035 SBC
• The Computer Corner
Issue Number 22:
• NEW-DOS: Write Your Own Operating
System
• Variability in the BDS C Standard
Library
• The SCSI Interface: Introductory
Column
• Using Turbo Pascal ISAM Files
• The AMPRO Little Board Column
• The Computer Corner
Issue Number 23:
• C COlumn: Flow Control Ie Program
Structure .
• The Z Column: Getting Started with
Directories Ie User Areas
• The SCSI Interface: Introduction to
SCSI

• NEW-DOS: The Console Command
Processor
• Editing The CP/M Operating System
• INDEXER: Turbo Pascal Program to
Create Index
• The AMPRO Little Board Column
• The Computer Corner
Illue Number 24:
• selecting and Building a System
• The SCSI Interface: SCSI Command
Protocol
• Introduction to Assembly Code for
CP/M
• The C Column: Software Text Filters
• AMPRO 186 Column: Installing Ms
DOS Software
• The ZColumn
• NEW-DOS: The CCP Internal Com
mands
• ZTIME-1: A Realtime Clock for the
AMPRO lo80 Little Board
• The Computer Corner

Issue Number 25:
• Repairing Ie Modifying Printed Circuits
• loCom vs Hacker Version of Z-System
• Exploring Single Linked Lists in C
• Adding Serial Port to Ampro Little Board
• Building a SCSI Adapter
• New-DOS: CCP Internal Commands
• Ampro '186: Networking with SuperDUO
• ZSIG Column
• The Computer Corner

Issue Number 26:
• Bus Systems: Selecting a System Bus
• Using the SBl80 Real Time Clock
• The SCSI Interface: Software for the
SCSI Adapter
• Inside AMPRO Computers
• NEW-DOS: The CCP Commands Con
tinued
• ZSIG Corner
• Affordable CCompilers
• Concurrent Multitasking: A Review of
DoubleDOS
• The Computer Corner

l88ue Number 27:
• 68000 TinyGiant: Hawthorne's Low
Cost 16-bit SBC and Operating System
• The Art of Source Code Generation:
Disassembling z-so Software
• Feedback Control System Analysis:
Using Root Locus Analysis and Feed
back Loop Compensation
• The C Column: A Graphics Primitive
Package
• The Hitachi HD64180: New Life for 8
bit Systems
• ZSIG Corner: Command Line
Generators and Aliases
• A Tutor Program for Forth: Writing a
Forth Tutor in Forth
• Disk Parameters: Modifying The
CP/M Disk Parameter Block for Foreign
Disk Formats
• The Computer Corner

The Computer Journal/lssue'29

•=
C. C. Software, 1907 Alvarado Ave. Dept M

Walnut creek, CA 94596 (415)939-8153

'Ill

Source Code Generators
by C. C. Software can

give you the answer.~ J ~.

"The darndest thing Z
I ever did see ... " ..tt. . .

" . .. if you're a t 'I'~ ~
all interested in '0 . r'!'_
what's going on in 0 ·Th. Cod•••• t ••• •

your system, it's
worth it." The SCG-TP program produces
Jerry Pournelle, ~ commented and labeled
BYTE, Sept '83 source code for your TURBO-

Pascal system. To modify,
just edit and assemble. Version 3.00A (Z80) is $45.
SCG's available for CP/M 2.2 ($45) and CP/M. ($75).
Please include $1.50 postage (in Calif add 6.5\).

Ever Wondered What Makes TuRBaPAscAL 'TIck?

.~.

Issue Number 28:
• Starting Your Own BBS: What it takes to
run a BBS.
• Build an AiD Converter for the Ampro
L.B.: A low cost one chip AiD converter.
• The Hitachi HD64180: Part 2, Setting the
wait states & RAM refresh, using the PRT,
and DMA.
• Using SCSI for Real Time Control:
Separating the memory & I/O buses.
• An Open Letter to STD·Bus Manufactur·
ers: Getting an industrial control job done.
• Programming Style: User interfacing
and interaction.
• Patching Turbo Pascal: Using dlsassem·
bled Z80 source code to modify TP.
• Choosing a Language for Machine
Control: The advantages of a compiled
RPN Forth like language.

CP/M is a re9istered trademark ot Oi9ital Reaearch, Inc.
TURBO Pascal is a trademark ot Borland International

~----------~--------------------------------- 4

TCJ ORDER FORM
SUbscriptions U.S. Canada Surface

Foreign
Total

6issues per year
o New 0 Renewal 1year $16.00

2 years $28.00
$22.00
$42.00

$24.00

Back Issues ----------------- $3.50 ea.
Six or more ----------------- $3.00 ea.
's

$3.50 ea.
$3.00~a

$4.75 ea.
$4.25 ea.

Total Enclosed
I

All funds must be in U.S. dollars on a U.S. bank.

o Check enclosed 0 VISA 0 MasterCard Card # _

Expiration date, Signature _

Name _

Address _

CityJ>:JState ZIP _

.The Computer Journal
190 Sullivan Crossroad. Columbia Falls. MT 59912 Phone (406) 257-9119

L _

The Computer Journal/Issue IJ29

Editor

(Continued from page 2)

Technical Support
The computer industry, just like most

other U.S. industries, is driven by sales.
Consumable items such as food, soap,
beer, and cigarettes which are used up
must be purchased over and over again, so
there is a lot of advertising money
available for existing products which
remain in production for a long time.
Items such as computers, peripherals, and
software tend to be used for a long time
and only replaced with new revised
products, so advertising money is
available only for the newest products.

This means that the people who want to
learn more about the older computer
systems and utility programs receive little
support from advertisiers who only want
to sell them something new and different.
That's why the big glossy magazines con
centrate on the new products which their
advertisers need to sell instead of suppor
ting the users who want to learn about
what they already have. It also means that
it is up to us to provide our own technical
support by sharing our knowledge with
each other.

The lack of support is especially noticed
by CP/M users, because very few vendors
are advertising CP/M related products,
and most magazines have abandoned
CP/M because it is not generating enough
advertising income. TCl is here to serve
your needs, but we can't do it if we don't
hear from you - if you don't contribute
anything, don't expect anything.

Do You Need to Program?
A writer in another publication stated

that there is no longer a need to program
because everything you need has already
been written and is available as
sharewhare or in the public domain.

I agree that some people don't need to
program, but I disagree with the blanket
statement that no one has to program. It
all depends on what you are doing with
your computer, and anyone who makes
such a statement has a very limited view
based on what they see. Someone who
only needs a wordprocessor, a spread
sheet, and an accounting program can
probably get by without doing any
programming as long as they are content
to use the programs exactly as they are
written using the exact hardware and
peripherals for which they were
designed - but heaven help them if they
want to change printers or modify a
report format.

44

I am constantly writing short programs
for the office. Most of them are for
filtering text files, managing data files, or
to drive the printers and the typesetter.
These are primarily non-standard ap
plications for which I doubt there are low
cost programs readily available - and
even if they are available it is probably
faster to write them than it is to try to
locate them.

"... It Is Up to us to provide
our own technical support
by sharing our
knowledge"

One example is a mailing list which we·
purchased in DlF format and needed to
convert to MailMerge'!l format. It didn't
take more than about a half hour to write
a BDS C program to do the job. I have
pieces of code for handling input and out
put files plus other common tasks, which I
read in with WordSt~ and then
modify. No, the code was not elegant, and
it did not include good user interfacing,·
but the file was converted, and I may
never use it again. I don't even know how
long it took because it ran on another
computer while I was doing something
else. In this case it was much faster and
easier to write the code than it would have
been to search for something which might
not even do exactly what I wanted. A
couple hours after we received the DIF file
on disk, we were using the data and I was
doing something else.

We did not know what format the data
would be in, so the first thing I did was t'J
dump a few pages to the printer in HEX
and ASCII - then it was easy to figure
out what the C program needed to de.
This brings up another programming
need, which is the problem of determining
file structures for custom modifications.
The first thing I do with any new file type
is a dump in order to see how it's put
together. We use the Condor<!> database
system and while it works well in most
cases, there are some instances where we
need something different. Condor can ex
port the data to an ASCII file, but it is a
bother always writing a file, so I just did a
dump and then wrote a simple C program

to extract (or even modify) the data in the
main file.

Some of the routines I write for inter
facing to our old Compugraphic typeset
ter are even more specialized and unlikely
to be available elsewhere. The point of all
this is that while many microcomputer
users don't need to program, there are
those of us who do need to program. I'll
quote Hilton once more 'What's the use
of having a computer if you can't make it
do things YOUR way. '

You wouldn't be reading TCl if you
didn't want to be able to program, but is it
because you HAVE to program or
because you WANT to program? Let's
run a little survey. Write and let us know
if you could perform all your work or job
functions without programming and you
just program for fun, or if programming
is a necessary part of the job.

Multi·Tasking or Multi.Systems?
While everyone else is pursuing multi

tasking and multi-user systems, I'm going
the other way towards one user with
multi-sytems. The cost of MS DOS clones
and CP/M systems is so low (Xerox 820-11
with 10 MB hard drive, CP/M 2.2, and
WordStar, for $349 in BCE ad on page
459 of the August Computer Shopper)
that it is cheaper and easier to use another
system for time consuming tasks such as
database sorts or printer drivers. Why buy
a printer buffer when you can get a com
plete system with hard drive for $350?
You can set up the extra system so that
you can send the data over RS-232 at
19.2K baud (even between CP/M, 68000,
and MS DOS systems, or you can move it
on a disk).

Now if I just had a master operating
system which would manage multi
systems instead of multi-tasking....

The Coming Bloodbath There have not
been many announcements about layoffs
or business closings during the past six
months, but all is not well in the industry.

There are too many businesses trying to
sell the same or equivalent products, and
now that the demand is slacking off some
of them are starting to hurt. We have
talked to many suppliers who are cutting
back on their advertising. Has anyone else
noticed that the July Byte is 200 pages less
than the 1983 issue? At the same time the
August issue of The Computer Shopper
has grown from 322 pages to 512 pages in
the last year! This indicates a major
change in buying habits as computers
become a commidity. It is difficult to un-

. The Computer Journal/lssuelt29

derstand how all those advertisers in
Computer Shopper are selling enough to
pay for the ads, and if they are selling that
much, how is that affecting the computer
stores? Also, how long will the market
support sales of that magnitude before the
demand is satisfied?

I'm predicting that sales will decrease
rapidly by October or November, and that
the suppliers will try to hold out for the
Christmas season, but that we'll see a lot
of casulaties by February or March. It will
be interesting to watch what happens in
the computer magazine field as those
businesses fail (remember that there is
about a four month lead time for adver
tising). I've been plotting the page count
for Byte since 1980, and Computer Shop
per since August 1986, and would be in
terested in seeing a chart of the page coun
ts for some of the other magazines for the
past three or four years (if you keep your
magazines, send the page counts for each
month and year, and I'll publish a chart
of the results). It is not impossible that we
rr.ay see more computer magazines folding
next year when their advertising revenue
drops below an acceptable figure.

Again, any feedback or comments on
this will be appreciated.

TCJ'S DDS - The Final Chapter
One thing that McCain didn't mention

in his article "Starting Your Own BBS" in
the last issue is making sure that you have
access to a reliable phone line.

Weare on a long rural line with such
poor quality that we often have problems
even with voice transmissions, and there
are many times when we can not com
municate at 300 baud much less 1200
baud. The final two weeks were so bad
that we have finally had to discontinue the
Tel BBS because of transmission
problems. While I blame most of the
problem on our local lines, the quality is
especially bad when the caller uses long
distance services other than
AT&T - even with voice calls I often
have to have the caller redial using AT&T
in order to be able to understand them.
Perhaps this is because we are so far from
a node for the alternative services.

I'll try to make arrangements to place
the program listings on another board in
an area with better communications, and
until then I'll supply listings on disk (as
far as we are from most people, a disk is
probably about as cheap as a phone call).

••

M
o
V
I
N
G

?
•

Make certain that TCJ follows you
to your new address. Send both old and
new address along with your
expiration number that appears on
your mailing label to:

THE COMPUTER JOURNAL
190 Sullivan Crossroad
Columbia Falls, MT 59912

If you move and don't notify us, TCJ
is not responsible for copies you miss.
Please allow six weeks notice. Thanks.

------- Turbo Pascal· Advanced Applications

Abook with

ADVANCED TOPICS in TURBO PASCAL

Table of Contents

o Optimization Techniques
o Using the DOS Background Print Spooler
o System Level Tools
o Creating Libraries
o Exploiting Command Line Arguments
o Using aBinary Search Tree
o Techniques for Data Compression
o Claiming CP/M Memory
o Break the 64K Data Limit
o Linked Lists for Data Structuring
o Interrupts from Turbo Pascal
o Calling the DOS Command Processor
o Bit Mapped Graphics
o Teaching an Old Screen New Tricks
o Implementing 20 Core Graphics
o Build aSubset Pascal Compiler

The Computer Journal/Issue *29

Order Turbo Pascal· Adranced Applications for $19.95 post
paid in USA; with MS DOS disk, $32.95. Add $3.50 for surface ship
ment to Canada or other countries; air rates on request. Order from
Rockland PubliShing, Inc., 190 Sullivan, Suite 103. Columbia Falls,
MT. 59912. Visa or Mastercard accepted. Phone orders , call
(406) 257-9119. Fr.. InfDnlIItion II mHabll. Dealer inquiries
welcomed.

.....packed with good
advanced technical informatio1L ..

45

Books of Interest

Advertiser's Index

AMPRO Computers 12

Anapro 4

Bersearch .. 17

C User's Group II

c.c. Software 35

Computer Journal 42,43

Echelon, Inc 23,30

Electronic Technical Services 20

Hawthorne Technology 33

Kenmore Computer Tech. 15

Micromint. 41

MicroPro '" 21

N/Systems 4

North American 180 Group 20

Rockland Publishing 45

Sage Microsystems East 25

Turbo Power 47

48

The purpose of this section is to bring
important reference resource material to
your attention, and to help you determine
which items should be added to your
library. We will attempt to concentrate on
the less well known and unusual titles,
especially those not already in wide
distribution.

We welcome your suggestions of titles
which should be included, and also your
requests for topics for which you can not
find suitable reference material.

The 68000: Principles & Programming
by Leo J. Scanlon
Published by Howard W. Sams & Co.
1981,5Y2 x 8Y2", 237 pages

This is a very useful book for someone
switching over to the 680XX family, as it
covers the background, chip hardware,
and interfacing in addition to the instruc
tion set and routines. Originally published
in 1981, the copy I have is the 1986 seven
th printing - a book which has been
reprinted this many times must be selling
well.

The contents are as follows:
• Chapter I: An Introduction to the

68000 Microprocessor - Overview of the
68000; Internal Registers; Background on
the Design of the 68000.

• Chapter 2: Cross Macro Assembler
- Assembler Statements; Assembly
Language Instructions; Stand Alone
Comments; Assembler Directives; Ex
pressions in the Operand Field; Con
ditional Assembly; Macros; Line Listing
Format.

• Chapter 3: The 68000 Instruction Set
- Instruction Format in Memory; Ad
dressing Modes; Effective Addressing
Mode Categories; Instruction Types; Data
Movement Instructions; Integer Arith
metic Instructions; Locigal Instructions;
Shift and Rotate Instructions; Bit
Manipulation Instructions; Binary Coded
Decimal (BCD) Instructions; Program
Control Instructions; The Link and
Unlink Instructions; System Control In
structions.

• Chapter 4: Mathematical Routines
Multiplication; Division; Division With
Overflow; Square Root.

• Chapter 5: Lists and Look Up Tables
- Unordered Lists; A Simple Sorting
Technique; Ordered Lists; Look Up
Tables; Jump Tables.

• Chapter 6: 68000 Microprocessor
Chip Hardware - Clock, Power, and
Ground Lines; The Data Bus and Address
Bus; Function Code Signals; Asyn
chronous Control Signals; Synchronous
Control Signals; Bus Arbitration Signals;
System Control Signals; Interrupt Control
Lines.

• Chapter 7: Processing States,
Privilege States, and Execptions
Processing States; Privlege States; Excep
tions; Internally Generated Exceptions;
Externally Generated Exceptions.

• Chapter 8: Fundamentals of Inter
facing - 68000 Support Chips; 6800 Sup
port Chips; Interfacing a 6821 PIA to the
68000.

• Chapter 9: System Development
Motorola System Support Products;
VME Bus; Other 68000 Related Products;
68000 Software Support.

The book provides a good overview of
the 68000, with enough details to get you
started. I like the fact that the chapter
covering the instruction set is grouped by
function with similar instructions
together, instead of being discussed in
alphabetical order. There are other
reference books available with the
alphabetical arrangement for use after
you are familiar with the instructions. In
addition to the chapter contents listed
above, there are several appendices in
cluding Instruction Execution Times and
a Summary of the 68000 Instruction Set.

The Computer Journal/Issue 1129

Computer Corner

(Continued from page 48)
prints. having all wires labeled and
marked. as assembled on site prints
(showing changes or additions made at the
last minute), make sure it has a modular
design (affords for easy replacement of
parts). doesn't contain one of a kind bus
system (uses V~lE, STD, or Multibus car
ds). The last kicker was the memory
upgrade of $3000 per 64K of memory, all
because the original memory cards were
not designed correctly. Component wise
tha~ is $300 worth of "!emory going for
$3000. not a bad mark up.

The point to consider here is watching
your purchases for the near and long
term. It may work great right now but
what if it fails. The industries have been
cutting back on using skilled personnel to
service equipment, not supplying
adequate documents to make your own
servicing possible. and mostly expecting
you to return the unit for repairs. This
means you would need complete spares of
every part used in the system, if you want
to be up and running at all times. For GE
systems that is $3000 (all boards cost

Registered Trademarks

It is easy to get in the habit of using
company trademarks as generic terms,
but these registered trademarks are
the property of the respective com
panies. It is important to acknowledge
these trademarks as their property to
avoid their losing the rights and the
term becoming public property. The
following frequently used marks are
acknowledged, and we apologize for
any we have overlooked.

Apple II, II + , lIe, lIe, Macintosch,
DOS 3.3, ProDOS; Apple Computer
Company. CPtM, DDT, ASM, STAT,
PIP; Digital Research. MBASIC;
Microsoft. Wordstar; MicroPro Inter
national Corp. IBM-PC, XT, and AT;
IBM Corporation. Z-80, Zilog. MT
BASIC, Softaid, Inc. Turbo Pascal,
Borland International.

Where these terms (and others) are
used in The Computer Journal they are
acknowledged to be the property ofthe
respective companies even if not
specifically mentioned in each occuren
ceo

The Computer Journal/Issue 1f29

about this) times 15, yes that is fifteen dif
ferent board types. When I say this is a
poor design. I am serious. The power
supply alone is 4 different boards (that I
know 01), anyone of which can mess you
up and can not be replaced with anything
but the proper spare board. Most well
designed systems. have a separate power
supply, with a power monitoring circuit
on the main CPU unit. Should the supply
become flaky, the CPU sees it, shuts
things down and you replace the unit with
a spare or something like it. Down time on
systems like that can be longer for me to
get there than it is to fix them. Systems
that don't have clear modular design can
take longer to trouble shoot than repair.

I just recently bought a new car and
before I did, I checked Consumers Report
and compared what I was interested in to
other comparable units. Unfortunately,
there is not a consumers report for in
dustrial controllers. We could also use cne
for regular computers as well. I have
heard reports that IBM ATs are having
hard disk failures as high as 60010. I don't
know if this is true or not, but one just
died the other day at work (less than 4
months use) and several friends have gone
through two or three drives before getting
one to last. I also had a course in a
training lab with 10 XTs using IOMeg
hard drives, half of which sounded like
gum ball machines (you could hear every
bearing). Now these are real problems,
but there is not a publication that tells you
about these problems, except us. Let me
know if you have validating information
about systems or designs which are par
ticularly good or bad. Yup, that is
"good" also, as I want to let you know
what to buy as well.

This is enough for one month, next time
I should have some more projects finished
and be getting my new 68K system by
then. I will be at the SOG again this year
with Art. So till then, keep hacking. •

TURBO PROSRAMMERS-

I £./" / I

,
••• CUTS OEBUSs/1S FRUSTRATIO••
TDeDugPlUS IS anew ,nteract,ve SymDoilC de
Dugger fhatlntegrates N/fh TurDo Pascal 10 let you
• Examine and change variables at runtime

uSing symDoiJc names - ,nclUdlng recoras.
pOinters. arrays. and local vanaDles.

• Trace and set breakpoints uSing procedure
names or source statements,

• View source code Nnile deDugglng,
• Use Turbo Pascal editor and DDS DEBUG

command.

TDeDugPlUS also Includes a soeclal '-lAP lJIe
generation mode fully compatlDle ..,th external
deDuggers such as Peoscope.4tron SymdeD. and
others - even on programs wotten With TurDo
EXTENDER

An exoanded supOoflea ,erSlon of fhe acclaimed
ouMc domain oragram TDEBUG f,1e TDeDugPluS
package Includes one OSDO disk. : omplete source
code, a reference card. ana an aD-page ponIed
manual 256K 0]1 .memury reQUifed SimplJly
deDugglng' S60 COMPLETE

TURBO EITE.OERN
TurDo EXTENOEFi prOVides you Ihe lollowlng
powerful 100iS fa Dreak fre 64K Damer

• ~rg, Code Modet allows programs to use all
640K Nlthout overlays or chaining, while
allOWing you to converi existing programs With
mlnlmaf effort. makes EXE files,

• Mak, Facility oilers separate compilation
eltminatlng the need lor you 10 recompile
unchanged modules,

• ~rg, Data Arrays automatically manages
data arrays up to 30 megaDytes as well as any
arrays in expanded memory (EMS),'

• Additional TurIJo EXTENDER tools include
Overlay Analyst. Disk Cache, Pascal Encryptor.
Shell File Generator, and File Browser.

The TurDo EXTENDER package Includes two DSDD
diSks, complete source code, and a 150-page
printed manual Drder now' $85 COMPLETE

TUR80I'OWER UTILmESTM
"" you own TurDo Pascal. you should own
TurDoPower Programmers Utitities, that's all there
is to iI. " Bruce WeDster, BYTE Magazln,

TurDoPower Uti/ities alters DIne powerful pro
grams: Program Siruciure Analyzer, Executioo
Timer. Execution Proliler. Pretty Printer, Command
Repeater, Pattern Replacer, Dilterence Finder, File
Finder, and Super Directory

The TurDoPower Uti/ilies package Incfudes three
DSDD disks, relerence card, and manual. $95 with
source code; $55 executable only

ORDER DIRECT TODAY!
• MC/VISA Call Toll Fre, 7days a week.

800-538-8157 x830 (US)
800-672·3470 x830 rCA)

• Umil,d T/m, Off,,/ Buy two or more
TurboPower prOducts and save 15%1

• SaU./actlon Guaranteed or your money Dack
Within 30 days.

For Brochures, Dealer or other Informallon,
PO, COD - call or write:

~O
31095colts Valley Dr. 11122

.. Scotts Valley. CA 95066
(408) 438-8608

'. M-F 9AM-5PM PST

The above TurboPower orotlucts reoUlle furDo Pasca/30
(staJlrJartl, 8087, or BCD) anti PC-DOS 2 Xor 3 X. anti
run on the IBM PC / XT/AT and comOlllDles

47

'..
,'Il

THE COMPUTER CORNER
A Column by Bill Kibler

The summer heat is here, and there is
nothing to do about it except to work har
eer. I am nearing completion of my
master's program and am starting to con
sider other job prospects, What I am
facing is mostly an uphill battle however.
Over the past year I have learned that the
public, and management in particular, has
a complete misconception of what is
needed to teach computer skills. Some
people equate it with learning to drive a
car. I equate the skills needed more closely
to those of learning to fly.

We take the skills we have learned using
and servicing computers mostly for gran
ted. Those of us who are technically in
clined have little trouble handling the
structure under which most computers
operate. After usually a rather short
period of time, we find we can master any
new operations by relating it to other
previous situations. The public at large
unfortunately has none of these at
tributes.

My last two classes have had a number
of school teachers included in them, and I
have been able to see first hand what an
educated person, who has never seen a
computer before, encounters in trying to
learn the operations. The first problem is
they can't type, and lots have never used a
typewriter before. I don't understand how
these people ever got the credential, but I
guess typing services are making more
money· than we think. These students get
lost between DOS and program comman
ds very easily. The concepts of structure
and dividing programs into logical
operations is a hard concept for them to
understand.

The real battle for these people is with
their schools. The schools expect these
people, after one or two classes, to be able
to teach other teachers and students.
During the teaching they should also in
tegrate and write some creative
educational programs. Because we work
with programs and computers we under
stand the fallacy of this concept, unfor
tunately the school managers know so lit
tle about computers, they can't under
stand why these programs are not
working. As I see it, untrained managers
in education appear to be a large part of

48

the problem.
Managers in other fields can also be

problems, especially if they were trained
on mainframes. The manager of the com
puters services where I work has never
used a microcomputer before. He told me
once, he bought a C64 for his kids to play
with, and that is his knowledge of micros.
When it comes to training or purchasing
of systems, this person in charge has little
idea of the needs of users or skills needed
to use such systems. Now that
management has seen the productivity of
micros, they are buying them and
promoting programmers to teach their
use. I feel strongly that these managers
will also blame the computer company
when these poorly trained people destroy
a couple months of data with one key
stroke.

I guess what I am getting at is the lack
of appreciation for properly trained
people in industry. I see this as one reason
why the Japanese have been able to
produce better products. They have
valued training and skills very highly. We
seem to have taken our education of late
rather lightly. I know of lots of jobs where
I work in which a large number of people
have acquired their position by being
related to the boss. Now don't get me
wrong, I have nothing against properly
qualified people that are related getting
jobs over someone else who is not related.
But what I have seen is people without
skills and qualifications being given jobs
because of relationships, or the cut of
their clothes. It is my opinion that if we
continue this practice it will not be long
before countries other than Japan pass us
up technically.

In the Mail ...

On lighter subjects, I received the last
copy of POOR MAN'S NETWORK, by
Anderson Techno-Products. This is their
version 2.00 and I was using version 1.0
before this. I haven't had a chance to
really test the things out yet, other than
seeing that it worked. One thing he didn't
do was make it clear that the addresses
used in the overlay package need to be
changed from the version 1.0 equates. I

tried using mine from the other version
apd they didn't work the first time. I
changed the equates to the new addresses
(10 hex higher, OFFSET now OFOO not
OEOOhex) and it came up without any
other problems. I still have problems with
his BIGBOARDB overlay as I am using a
XEROX 82011 and have to use some other
code. I have to use a MVI A,lOh and OUT
PORTSTAT as part of each I/O
(DRSANYEXT and DRSEXTRDY)
before the IN PORTSTAT. The ratebaud
(OE not OF) and stop bits (04 not OChex)
were also changed.

The neat thing about this version is the
overlays for the RPM-PC program. This
is an CP1M emulation program for the
PC compatibles. Using this overlay should
allow you to run the network on the PC
and transfer CP1M and PC files back and
forth. I use a modem program now, but
could see the advantage of using this on
the Pc. I tried it with the Z80MU
program from PCBlue #185, but still
haven't found all the changes needed yet.
I also have the Atari ST and its CP1M
emulation program to try and see if we
can make it run on them. I am looking
forward to later when I can spend more
time wringing out the program. He has
also changed the file handling a bit, but I
will cover that later too.

The Saga Continues
I have had more rounds with the GE

system at work lately, and hopefully have
it fixed for now. We have spent over S30k
just keeping this thing running. That is the
cost of a new controller for the SAXIS
lathe it is on. It really pays to check on
replacement cost and technical support
cost before one buys a system of any kind.
The idea that these units will never break
is just not true. After all this money we
spent, we still don't have adequate spare
parts, and there is going to be major
problems when I leave later this year. The
training on this system has really become
specific, as it is just a one of a kind mon
ster. I have heard however that all GE
systems are much the same.

Some points to keep in mind when
checking out other systems are: as built

(ContinUed on page 47)

The Computer Journal/Issue ##29

